Unique Perfect Phylogeny Is NP-Hard

We answer, in the affirmative, the following question proposed by Mike Steel as a $100 challenge: "Is the following problem NP-hard? Given a ternary phylogenetic X-tree T and a collection Q of quartet subtrees on X, is T the only tree that displays Q?" [28, 29] As a particular consequence of this, we show that the unique chordal sandwich problem is also NP-hard.

[1]  Mike A. Steel,et al.  Algorithmic Aspects of Tree Amalgamation , 2000, J. Algorithms.

[2]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[3]  Martin Charles Golumbic,et al.  Graph Sandwich Problems , 1995, J. Algorithms.

[4]  Laurent Juban,et al.  Dichotomy Theorem for the Generalized Unique Satisfiability Problem , 1999, FCT.

[5]  G. Estabrook,et al.  Cladistic Methodology: A Discussion of the Theoretical Basis for the Induction of Evolutionary History , 1972 .

[6]  F. McMorris,et al.  A Mathematical Foundation for the Analysis of Cladistic Character Compatibility , 1976 .

[7]  M. Steel The complexity of reconstructing trees from qualitative characters and subtrees , 1992 .

[8]  Nadia Creignou,et al.  Complexity of Generalized Satisfiability Counting Problems , 1996, Inf. Comput..

[9]  Simone Linz,et al.  The Complexity of Finding Multiple Solutions to Betweenness and Quartet Compatibility , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[10]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..

[11]  G. Estabrook,et al.  An idealized concept of the true cladistic character , 1975 .

[12]  Michael R. Fellows,et al.  Two Strikes Against Perfect Phylogeny , 1992, ICALP.

[13]  David Fernández-Baca,et al.  A Polynomial-Time Algorithm for the Perfect Phylogeny Problem when the Number of Character States is Fixed , 1993, FOCS.

[14]  W. J. Quesne The Uniquely Evolved Character Concept and its Cladistic Application , 1974 .

[15]  Dan Gusfield,et al.  Efficient algorithms for inferring evolutionary trees , 1991, Networks.

[16]  Walter J. Lequesne Further Studies Based on the Uniquely Derived Character Concept , 1972 .

[17]  A. D. Gordon Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labeled leaves , 1986 .

[18]  Le Quesne,et al.  The Uniquely Evolved Character Concept , 1977 .

[19]  R. Sokal,et al.  A METHOD FOR DEDUCING BRANCHING SEQUENCES IN PHYLOGENY , 1965 .

[20]  Celina M. H. de Figueiredo,et al.  On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs , 2007, Theor. Comput. Sci..

[21]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[22]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[23]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[24]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[25]  Dan Gusfield,et al.  Generalizing the Four Gamete Condition and Splits Equivalence Theorem: Perfect Phylogeny on Three State Characters , 2009, WABI.

[26]  Sampath Kannan,et al.  Triangulating 3-Colored Graphs , 1992, SIAM J. Discret. Math..

[27]  G. F. Estabrook,et al.  An algebraic analysis of cladistic characters , 1976, Discret. Math..

[28]  G. Dirac On rigid circuit graphs , 1961 .

[29]  Dan Gusfield,et al.  Generalizing the Splits Equivalence Theorem and Four Gamete Condition: Perfect Phylogeny on Three-State Characters , 2009, SIAM J. Discret. Math..

[30]  E. Wilson A Consistency Test for Phylogenies Based on Contemporaneous Species , 1965 .

[31]  Michel Habib,et al.  Competitive graph searches , 2008, Theor. Comput. Sci..

[32]  Charles Semple,et al.  A characterization for a set of partial partitions to define an X-tree , 2002, Discret. Math..

[33]  M. Golumbic Chapter 3 - Perfect graphs , 2004 .

[34]  Fred R. McMorris,et al.  Triangulating vertex colored graphs , 1994, SODA '93.

[35]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[36]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .