Choquet-Integral-Based Evaluations by Fuzzy Rules: Methods for Developing Fuzzy Rule Tables on the Basis of Weights and Interaction Degrees

Choquet-integral-based evaluations by fuzzy rules are comprehensive evaluation methods involving the use of a fuzzy rule table and the Choquet integral. Fuzzy measures are identified from the fuzzy rule table. In this paper, we propose methods for developing fuzzy rule tables for Choquet integral models on the basis of a basic fuzzy rule table and weights of evaluation items.

[1]  Christophe Labreuche,et al.  Bi-capacities - II: the Choquet integral , 2005, Fuzzy Sets Syst..

[2]  Eiichiro Takahagi A fuzzy measure identification method by diamond pairwise comparisons and $${\phi_s}$$ transformation , 2008, Fuzzy Optim. Decis. Mak..

[3]  M. Sugeno,et al.  A theory of fuzzy measures: Representations, the Choquet integral, and null sets , 1991 .

[4]  Christophe Labreuche,et al.  Bi-capacities - I: definition, Möbius transform and interaction , 2005, Fuzzy Sets Syst..

[5]  Christophe Labreuche,et al.  Capacities on lattices and k-ary capacities , 2003, EUSFLAT Conf..

[6]  Jerzy W. Grzymala-Busse,et al.  Transactions on Rough Sets XII , 2010, Lecture Notes in Computer Science.

[7]  Eiichiro Takahagi Choquet Integral Based Evaluations by Fuzzy Rules , 2009, IFSA/EUSFLAT Conf..

[8]  Christophe Labreuche,et al.  Bi-capacities -- Part I: definition, Möbius transform and interaction , 2007, ArXiv.

[9]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[10]  Christophe Labreuche,et al.  Bi-capacities -- Part II: the Choquet integral , 2007, ArXiv.

[11]  Christophe Labreuche,et al.  Bipolarization of posets and natural interpolation , 2008, ArXiv.

[12]  Eiichiro Takahagi Fuzzy Integral Based Fuzzy Switching Functions , 2004, Trans. Rough Sets.

[13]  Vicenç Torra,et al.  Fuzzy Measure and Probability Distributions: Distorted Probabilities , 2005, IEEE Transactions on Fuzzy Systems.

[14]  G. Choquet Theory of capacities , 1954 .

[15]  Eiichiro Takahagi Fuzzy Three-valued Switching Functions Using Choquet Integral , 2003, J. Adv. Comput. Intell. Intell. Informatics.

[16]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .