Choquet-Integral-Based Evaluations by Fuzzy Rules: Methods for Developing Fuzzy Rule Tables on the Basis of Weights and Interaction Degrees
暂无分享,去创建一个
[1] Christophe Labreuche,et al. Bi-capacities - II: the Choquet integral , 2005, Fuzzy Sets Syst..
[2] Eiichiro Takahagi. A fuzzy measure identification method by diamond pairwise comparisons and $${\phi_s}$$ transformation , 2008, Fuzzy Optim. Decis. Mak..
[3] M. Sugeno,et al. A theory of fuzzy measures: Representations, the Choquet integral, and null sets , 1991 .
[4] Christophe Labreuche,et al. Bi-capacities - I: definition, Möbius transform and interaction , 2005, Fuzzy Sets Syst..
[5] Christophe Labreuche,et al. Capacities on lattices and k-ary capacities , 2003, EUSFLAT Conf..
[6] Jerzy W. Grzymala-Busse,et al. Transactions on Rough Sets XII , 2010, Lecture Notes in Computer Science.
[7] Eiichiro Takahagi. Choquet Integral Based Evaluations by Fuzzy Rules , 2009, IFSA/EUSFLAT Conf..
[8] Christophe Labreuche,et al. Bi-capacities -- Part I: definition, Möbius transform and interaction , 2007, ArXiv.
[9] A. Tversky,et al. Advances in prospect theory: Cumulative representation of uncertainty , 1992 .
[10] Christophe Labreuche,et al. Bi-capacities -- Part II: the Choquet integral , 2007, ArXiv.
[11] Christophe Labreuche,et al. Bipolarization of posets and natural interpolation , 2008, ArXiv.
[12] Eiichiro Takahagi. Fuzzy Integral Based Fuzzy Switching Functions , 2004, Trans. Rough Sets.
[13] Vicenç Torra,et al. Fuzzy Measure and Probability Distributions: Distorted Probabilities , 2005, IEEE Transactions on Fuzzy Systems.
[14] G. Choquet. Theory of capacities , 1954 .
[15] Eiichiro Takahagi. Fuzzy Three-valued Switching Functions Using Choquet Integral , 2003, J. Adv. Comput. Intell. Intell. Informatics.
[16] Hung T. Nguyen,et al. Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .