Online adaptive fuzzy neural identification and control of nonlinear dynamic systems

This chapter presents a robust Adaptive Fuzzy Neural Controller (AFN C) suitable for identification and control of uncertain Multi-Input-Multi-Output (MIMO) nonlinear systems. The proposed controller has the following salient features: (1) Self-organizing fuzzy neural structure, i.e. fuzzy control rules can be generated or deleted automatically; (2) Online learning ability of uncertain MIMO nonlinear systems; (3) Fast learning speed; (4) Fast convergence of tracking errors; (5) Adaptive control, where structure and parameters of the AFNC can be self-adaptive in the presence of disturbances to maintain high control performance; (6) Robust control, where global stability of the system is established using the Lyapunov approach. Two simulation examples are used to demonstrate excellent performance of the proposed controller.

[1]  J. C. Wu,et al.  A sliding-mode approach to fuzzy control design , 1996, IEEE Trans. Control. Syst. Technol..

[2]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[3]  Shuzhi Sam Ge,et al.  Adaptive Neural Network Control of Robotic Manipulators , 1999, World Scientific Series in Robotics and Intelligent Systems.

[4]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[5]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[6]  Yaochu Jin,et al.  Decentralized adaptive fuzzy control of robot manipulators , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Hamid R. Berenji,et al.  Learning and tuning fuzzy logic controllers through reinforcements , 1992, IEEE Trans. Neural Networks.

[8]  D. Mackay,et al.  Bayesian neural networks and density networks , 1995 .

[9]  Meng Joo Er,et al.  Adaptive control of robot manipulators using fuzzy neural networks , 2001, IEEE Trans. Ind. Electron..

[10]  Peter J. Gawthrop,et al.  Neural networks for control systems - A survey , 1992, Autom..

[11]  R. Sanner,et al.  Structurally dynamic wavelet networks for adaptive control of robotic systems , 1998 .

[12]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[13]  Jing Zhu,et al.  Neural network based fuzzy identification and its application to modeling and control of complex systems , 1995, IEEE Trans. Syst. Man Cybern..

[14]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[15]  G. Klir,et al.  Bayesian inference based on fuzzy probabilities , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[16]  Li-Xin Wang,et al.  A Course In Fuzzy Systems and Control , 1996 .

[17]  Yeong-Chan Chang,et al.  Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and H∞ approaches , 2001, IEEE Trans. Fuzzy Syst..

[18]  Junhong Nie Fuzzy-neural control , 1995 .

[19]  Bernhard Sendhoff,et al.  On generating FC3 fuzzy rule systems from data using evolution strategies , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[20]  Jean-Jacques E. Slotine,et al.  Space-frequency localized basis function networks for nonlinear system estimation and control , 1995, Neurocomputing.

[21]  Toshio Yoshimura,et al.  Fuzzy control of a manipulator using the concept of sliding mode , 1996, Int. J. Syst. Sci..

[22]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[23]  Rong-Jong Wai,et al.  A supervisory fuzzy neural network control system for tracking periodic inputs , 1999, IEEE Trans. Fuzzy Syst..

[24]  Brad Lehman,et al.  Setpoint PI controllers for systems with large normalized dead time , 1996, IEEE Trans. Control. Syst. Technol..

[25]  G. Langholz,et al.  Genetic-Based New Fuzzy Reasoning Models with Application to Fuzzy Control , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[26]  Meng Joo Er,et al.  A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks , 2001, IEEE Trans. Fuzzy Syst..

[27]  Martin Brown,et al.  Neurofuzzy adaptive modelling and control , 1994 .

[28]  Derek A. Linkens,et al.  Fuzzy-neural control: principles, algorithms and applications , 1995 .