Proper generalized decomposition solutions within a domain decomposition strategy

"This is the peer reviewed version of the following article: Huerta, Antonio, Enrique Nadal, and Francisco Chinesta. 2018. Proper Generalized Decomposition Solutions within a Domain Decomposition Strategy. International Journal for Numerical Methods in Engineering 113 (13). Wiley: 1972 94. doi:10.1002/nme.5729, which has been published in final form at https://doi.org/10.1002/nme.5729. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

[1]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[2]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[3]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[4]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[5]  Antonio Huerta,et al.  Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations , 2008 .

[6]  Yvon Maday,et al.  The Reduced Basis Element Method: Application to a Thermal Fin Problem , 2004, SIAM J. Sci. Comput..

[7]  Rolf Stenberg,et al.  On weakly imposed boundary conditions for second order problems , 1995 .

[8]  Pierre Ladevèze,et al.  Separated Representations and PGD-Based Model Reduction , 2014 .

[9]  Pedro Díez,et al.  Effect of the separated approximation of input data in the accuracy of the resulting PGD solution , 2015, Adv. Model. Simul. Eng. Sci..

[10]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[11]  Yvon Maday,et al.  A Reduced-Basis Element Method , 2002, J. Sci. Comput..

[12]  A. Ammar,et al.  PGD-Based Computational Vademecum for Efficient Design, Optimization and Control , 2013, Archives of Computational Methods in Engineering.

[13]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[14]  Adrien Leygue,et al.  Separated representations of 3D elastic solutions in shell geometries , 2014, Adv. Model. Simul. Eng. Sci..

[15]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[16]  Anthony T. Patera,et al.  A port-reduced static condensation reduced basis element method for large component-synthesized structures: approximation and A Posteriori error estimation , 2014 .

[17]  R. Krause,et al.  A Dirichlet–Neumann type algorithm for contact problems with friction , 2002 .

[18]  Anthony T. Patera,et al.  A Static condensation Reduced Basis Element method: approximation and a posteriori error estimation , 2013 .

[19]  Gianluigi Rozza,et al.  Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system , 2015, Adv. Comput. Math..

[20]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[21]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[22]  Anthony T. Patera,et al.  The Static Condensation Reduced Basis Element Method for a Mixed-Mean Conjugate Heat Exchanger Model , 2014, SIAM J. Sci. Comput..

[23]  Gianluigi Rozza,et al.  Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries , 2016, Comput. Math. Appl..

[24]  Gianluigi Rozza,et al.  Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications , 2014 .

[25]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[26]  F. Chinesta,et al.  Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity , 2012 .

[27]  A. Huerta,et al.  Parametric solutions involving geometry: A step towards efficient shape optimization , 2014 .

[28]  Kathrin Smetana,et al.  A new certification framework for the port reduced static condensation reduced basis element method , 2015 .

[29]  Pedro Díez,et al.  An error estimator for separated representations of highly multidimensional models , 2010 .

[30]  Pedro Díez,et al.  Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications , 2015 .

[31]  Francisco Chinesta,et al.  PGD for solving multidimensional and parametric models , 2014 .

[32]  Anthony T. Patera,et al.  Optimal Local Approximation Spaces for Component-Based Static Condensation Procedures , 2016, SIAM J. Sci. Comput..

[33]  F. Chinesta,et al.  Recent advances on the use of separated representations , 2009 .

[34]  Adrien Leygue,et al.  Arlequin based PGD domain decomposition , 2014 .

[35]  Antonio Huerta,et al.  Simulating squeeze flows in multiaxial laminates: towards fully 3D mixed formulations , 2017 .

[36]  Anthony T. Patera,et al.  Port reduction in parametrized component static condensation: approximation and a posteriori error estimation , 2013 .

[37]  Gianluigi Rozza,et al.  A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks , 2012 .

[38]  F. Chinesta,et al.  3D Modeling of squeeze flows occurring in composite laminates , 2015 .

[39]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .