Structural and dynamic mechanisms of CBF3-guided centromeric nucleosome formation

[1]  C. Petosa,et al.  Phase-plate cryo-EM structure of the Widom 601 CENP-A nucleosome core particle reveals differential flexibility of the DNA ends , 2020, Nucleic acids research.

[2]  C. Dienemann,et al.  Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function , 2020, Nature.

[3]  S. Harrison,et al.  Cryoelectron Microscopy Structure of a Yeast Centromeric Nucleosome at 2.7 Å Resolution. , 2020, Structure.

[4]  D. Barford,et al.  Structure of the inner kinetochore CCAN complex assembled onto a centromeric nucleosome , 2019, Nature.

[5]  Ingmar B. Schäfer,et al.  CENP‐C unwraps the human CENP‐A nucleosome through the H2A C‐terminal tail , 2019, EMBO reports.

[6]  Nir Kalisman,et al.  Structure of the Human Core Centromeric Nucleosome Complex , 2019, Current Biology.

[7]  Glennis A. Logsdon,et al.  Human Artificial Chromosomes that Bypass Centromeric DNA , 2019, Cell.

[8]  M. Borgnia,et al.  Atomic resolution cryo-EM structure of a native-like CENP-A nucleosome aided by an antibody fragment , 2019, Nature Communications.

[9]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[10]  D. Barford,et al.  Architecture of the CBF3-Centromere Complex of the Budding Yeast Kinetochore , 2018, Nature Structural & Molecular Biology.

[11]  C. Vaughan,et al.  Insights into Centromere DNA Bending Revealed by the Cryo-EM Structure of the Core Centromere Binding Factor 3 with Ndc10 , 2018, Cell reports.

[12]  S. Subramaniam,et al.  Structural mechanisms of centromeric nucleosome recognition by the kinetochore protein CENP-N , 2018, Science.

[13]  I. Vetter,et al.  Decoding the centromeric nucleosome through CENP-N , 2017, eLife.

[14]  A. M. Ishov,et al.  CENP-B protects centromere chromatin integrity by facilitating histone deposition via the H3.3-specific chaperone Daxx , 2017, Epigenetics & Chromatin.

[15]  M. Singleton,et al.  Structural basis for assembly of the CBF3 kinetochore complex , 2017, The EMBO journal.

[16]  A. Panchenko,et al.  Molecular basis of CENP-C association with the CENP-A nucleosome at yeast centromeres , 2017, Genes & development.

[17]  A. Panchenko,et al.  Hydroxyl-radical footprinting combined with molecular modeling identifies unique features of DNA conformation and nucleosome positioning , 2017, Nucleic acids research.

[18]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[19]  Robert M Glaeser,et al.  Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens. , 2016, Biophysical journal.

[20]  I. Cheeseman,et al.  The molecular basis for centromere identity and function , 2015, Nature Reviews Molecular Cell Biology.

[21]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[22]  D. Cleveland,et al.  DNA Sequence-Specific Binding of CENP-B Enhances the Fidelity of Human Centromere Function. , 2015, Developmental cell.

[23]  A. Musacchio,et al.  HJURP involvement in de novo CenH3(CENP-A) and CENP-C recruitment. , 2015, Cell reports.

[24]  D. Tsuchiya,et al.  Localization and function of budding yeast CENP-A depends upon kinetochore protein interactions and is independent of canonical centromere sequence. , 2014, Cell reports.

[25]  S. Henikoff,et al.  The budding yeast Centromere DNA Element II wraps a stable Cse4 hemisome in either orientation in vivo , 2014, eLife.

[26]  A. Desai,et al.  A two-step mechanism for epigenetic specification of centromere identity and function , 2013, Nature Cell Biology.

[27]  U. Baxa,et al.  A Conserved Mechanism for Centromeric Nucleosome Recognition by Centromere Protein CENP-C , 2013, Science.

[28]  Kevan J. Salimian,et al.  The octamer is the major form of CENP-A nucleosomes at human centromeres , 2013, Nature Structural &Molecular Biology.

[29]  K. Struhl,et al.  Determinants of nucleosome positioning , 2013, Nature Structural &Molecular Biology.

[30]  Lijiang Yang,et al.  Probing Allostery Through DNA , 2013, Science.

[31]  S. Diekmann,et al.  Cell-Cycle-Dependent Structural Transitions in the Human CENP-A Nucleosome In Vivo , 2012, Cell.

[32]  S. Henikoff,et al.  Tripartite organization of centromeric chromatin in budding yeast , 2011, Proceedings of the National Academy of Sciences.

[33]  S. Harrison,et al.  Ndc10 is a platform for inner kinetochore assembly in budding yeast , 2011, Nature Structural &Molecular Biology.

[34]  Hiroshi Kimura,et al.  Crystal structure of the human centromeric nucleosome containing CENP-A , 2011, Nature.

[35]  G. Mizuguchi,et al.  Nonhistone Scm3 binds to AT-rich DNA to organize atypical centromeric nucleosome of budding yeast. , 2011, Molecular cell.

[36]  H. A. Cole,et al.  The centromeric nucleosome of budding yeast is perfectly positioned and covers the entire centromere , 2011, Proceedings of the National Academy of Sciences.

[37]  Kerry Bloom,et al.  Centromeres: unique chromatin structures that drive chromosome segregation , 2011, Nature Reviews Molecular Cell Biology.

[38]  Hua Xiao,et al.  Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3 , 2011, Nature.

[39]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[40]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[41]  Yusuke Nakamura,et al.  HJURP Is a Cell-Cycle-Dependent Maintenance and Deposition Factor of CENP-A at Centromeres , 2009, Cell.

[42]  J. Yates,et al.  Centromere-Specific Assembly of CENP-A Nucleosomes Is Mediated by HJURP , 2009, Cell.

[43]  H. Masumoto,et al.  CENP-B Controls Centromere Formation Depending on the Chromatin Context , 2007, Cell.

[44]  S. Biggins,et al.  Centromere identity is specified by a single centromeric nucleosome in budding yeast , 2007, Proceedings of the National Academy of Sciences.

[45]  S. Henikoff,et al.  Tetrameric Structure of Centromeric Nucleosomes in Interphase Drosophila Cells , 2007, PLoS biology.

[46]  G. Mizuguchi,et al.  Nonhistone Scm3 and Histones CenH3-H4 Assemble the Core of Centromere-Specific Nucleosomes , 2007, Cell.

[47]  Geert J. P. L. Kops,et al.  On the road to cancer: aneuploidy and the mitotic checkpoint , 2005, Nature Reviews Cancer.

[48]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[49]  David C. Bouck,et al.  The kinetochore protein Ndc10p is required for spindle stability and cytokinesis in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  K. Kaplan,et al.  The Interaction between Sgt1p and Skp1p Is Regulated by HSP90 Chaperones and Is Required for Proper CBF3 Assembly , 2004, Molecular and Cellular Biology.

[51]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[52]  H. Masumoto,et al.  CENP-B Interacts with CENP-C Domains Containing Mif2 Regions Responsible for Centromere Localization* , 2004, Journal of Biological Chemistry.

[53]  T. Köcher,et al.  Hsp90 enables Ctf13p/Skp1p to nucleate the budding yeast kinetochore , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  O. Nureki,et al.  Crystal structure of the CENP‐B protein–DNA complex: the DNA‐binding domains of CENP‐B induce kinks in the CENP‐B box DNA , 2001, The EMBO journal.

[55]  O. Stemmann,et al.  A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. , 1999, Genes & development.

[56]  D. Koshland,et al.  Cse4p Is a Component of the Core Centromere of Saccharomyces cerevisiae , 1998, Cell.

[57]  J. Lechner,et al.  A zinc finger protein, essential for chromosome segregation, constitutes a putative DNA binding subunit of the Saccharomyces cerevisiae kinetochore complex, Cbf3. , 1994, The EMBO journal.

[58]  H. Masumoto,et al.  Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box , 1992, The Journal of cell biology.

[59]  S. Dowell,et al.  DNA binding of CPF1 is required for optimal centromere function but not for maintaining methionine prototrophy in yeast. , 1991, Nucleic acids research.

[60]  J. Carbon,et al.  A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere , 1991, Cell.

[61]  Ronald W. Davis,et al.  Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy , 1990, Cell.

[62]  H. Willard,et al.  Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: a survey of alphoid sequences from different human chromosomes. , 1987, Nucleic acids research.

[63]  J. McGrew,et al.  Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae , 1986, Molecular and cellular biology.

[64]  W. Earnshaw,et al.  Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies. , 1986, The Journal of clinical investigation.

[65]  K. Bloom,et al.  Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes , 1982, Cell.

[66]  L. Clarke,et al.  Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs , 1982, Cell.

[67]  John Carbon,et al.  Isolation of a yeast centromere and construction of functional small circular chromosomes , 1980, Nature.

[68]  L. Manuelidis,et al.  Homology between human and simian repeated DNA , 1978, Nature.

[69]  L. Manuelidis Repeating restriction fragments of human DNA. , 1976, Nucleic acids research.

[70]  Holger Stark,et al.  GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. , 2010, Methods in enzymology.

[71]  Uma M. Muthurajan,et al.  Reconstitution of nucleosome core particles from recombinant histones and DNA. , 2004, Methods in enzymology.

[72]  E. S,et al.  Reconstitution of Nucleosome Core Particles from Recombinant Histones and DNA , 2003 .