Total least squares problem with the arbitrary unitarily invariant norms

This paper is focused on the total least squares (TLS) minimization of an approximation problem , with multiple right-hand sides. We consider the minimization with respect to a general unitarily invariant norm (UIN). In particular, we investigate existence of the TLS solution, relationships among TLS solutions with respect to different UINs, uniqueness of the correction matrices and of the TLS solution.

[1]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[2]  L. Mirsky SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .

[3]  M. Peruggia Total Least Squares and Errors-in-Variables Modeling: Analysis, Algorithms and Applications , 2003 .

[4]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[5]  R. Horn,et al.  Cauchy-Schwarz inequalities associated with positive semidefinite matrices , 1990 .

[6]  Sabine Van Huffel,et al.  Recent advances in total least squares techniques and errors-in-variables modeling , 1997 .

[7]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[8]  Ren-Cang Li,et al.  Monotonicity of unitarily invariant norms , 2015 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  Sabine Van Huffel,et al.  The Total Least Squares Problem in AX ≈ B: A New Classification with the Relationship to the Classical Works , 2011, SIAM J. Matrix Anal. Appl..

[11]  G. Stewart,et al.  A generalization of the Eckart-Young-Mirsky matrix approximation theorem , 1987 .

[12]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[13]  Z. Strakoš,et al.  THE CORE PROBLEM WITHIN A LINEAR APPROXIMATION PROBLEM AX ≈ B WITH MULTIPLE RIGHT-HAND SIDES∗ , 2012 .

[14]  Zdenek Strakos,et al.  Band Generalization of the Golub-Kahan Bidiagonalization, Generalized Jacobi Matrices, and the Core Problem , 2015, SIAM J. Matrix Anal. Appl..

[15]  X. Liu ON THE SOLVABILITY AND PERTURBATION ANALYSIS FOR TOTAL LEAST SQUARES PROBLEM , 1996 .

[16]  R. C. Thompson Principal submatrices IX: Interlacing inequalities for singular values of submatrices , 1972 .

[17]  Extension of the total least square problem using general unitarily invariant norms , 2007 .

[18]  Zdenek Strakos,et al.  The Core Problem within a Linear Approximation Problem $AX\approx B$ with Multiple Right-Hand Sides , 2013, SIAM J. Matrix Anal. Appl..

[19]  Noah H. Rhee,et al.  Eigenvalue inequalities and equalities , 1998 .

[20]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[21]  Ji-guang Sun Backward perturbation analysis of certain characteristic subspaces , 1993 .

[22]  Zdenek Strakos,et al.  Core Problems in Linear Algebraic Systems , 2005, SIAM J. Matrix Anal. Appl..