High-density and transparent boro-tellurite glass system against ionizing radiation: Fabrication and extensive characterization studies

[1]  E. M. Ahmed,et al.  Lithium-fluoro borotellurite glasses: Nonlinear optical, mechanical characteristics and gamma radiation protection characteristics , 2022, Radiation Physics and Chemistry.

[2]  H. Saudi,et al.  Exploration of material characteristics of tantalum borosilicate glasses by experimental, simulation, and theoretical methods , 2021 .

[3]  T. Kavas,et al.  Nuclear radiation shielding characteristics and physical, optical, mechanical, and thermal properties of lithium-borotellurite glass doped with Rb2O , 2021, Progress in Nuclear Energy.

[4]  N. Effendy,et al.  Influence of ZnO to the physical, elastic and gamma radiation shielding properties of the tellurite glass system using MCNP-5 simulation code , 2021 .

[5]  T. Kavas,et al.  Evaluations of physical and mechanical properties, and photon attenuation characteristics on lithium-germanate glass containing ZnO , 2021, Optik.

[6]  M. Sayyed,et al.  The impact of TeO2 on physical, structural, optical and radiation shielding features for borate glass samples , 2021, Optik.

[7]  H. Tekin,et al.  Cerium (IV) oxide reinforced Lithium-Borotellurite glasses: A characterization study through physical, optical, structural and radiation shielding properties , 2021, Ceramics International.

[8]  R. El-Mallawany,et al.  Synthesis, physical, optical properties and gamma-ray shielding parameters of some tellurite glasses , 2021 .

[9]  H. Saudi,et al.  Material characterization of WO3/Bi2O3 substituted calcium-borosilicate glasses: Structural, physical, mechanical properties and gamma-ray resistance competencies , 2021 .

[10]  N. Al-Hada,et al.  Comparison Study of Elastic, Physical and Structural Properties for Strontium Oxide and Manganese Oxide in Borotellurite Glasses for High Strength Glass Application , 2021, Journal of Inorganic and Organometallic Polymers and Materials.

[11]  ÇelenYonca Yahşi Gamma-ray-shielding parameters of some phantom fabrication materials for medical dosimetry , 2021 .

[12]  Ashok Kumar V,et al.  Investigation of the optical, mechanical, and radiation shielding features for strontium-borotellurite glass system: Fabrication, characterization, and EPICS2017 computations , 2021 .

[13]  H. Tekin,et al.  Fabrication, structural, optical, physical and radiation shielding characterization of indium (III) oxide reinforced 85TeO2-(15–x)ZnO-xIn2O3 glass system , 2021 .

[14]  M. Sayyed,et al.  Gamma Ray Shielding Properties of Yb3+-Doped Calcium Borotellurite Glasses , 2021, Applied Sciences.

[15]  H. Tekin,et al.  Physical, neutron, and gamma-rays shielding parameters for Na2O–SiO2–PbO glasses , 2021 .

[16]  Y. Al‐Hadeethi,et al.  Gamma radiation shielding and structural features for barium strontium boro-tellurite glass modified with various concentrations of molybdenum oxide , 2021 .

[17]  I. Akkurt,et al.  A comprehensive study on novel alumino-borosilicate glass reinforced with Bi2O3 for radiation shielding applications: synthesis, spectrometer, XCOM, and MCNP-X works , 2021, Journal of Materials Science: Materials in Electronics.

[18]  Ashok Kumar,et al.  Understanding the role of Bi2O3 in the P2O5–CaO–Na2O–K2O glass system in terms of physical, structural and radiation shielding properties , 2021, Journal of Materials Science: Materials in Electronics.

[19]  I. Akkurt,et al.  Evaluation of radiation shielding capacity of vanadium–tellurite–antimonite semiconducting glasses , 2021 .

[20]  C. K. Jayasankar,et al.  Effect of gamma irradiation on physical, optical, spectroscopic and structural properties of Er3+-doped vitreous zinc borotellurite , 2021, Journal of Luminescence.

[21]  F. Alresheedi,et al.  Effect of Sb2O3 addition on radiation attenuation properties of tellurite glasses containing V2O5 and Nb2O5 , 2021, Applied Physics A.

[22]  H. Tekin,et al.  A journey for exploration of Eu2O3 reinforcement effect on zinc-borate glasses: Synthesis, optical, physical and nuclear radiation shielding properties , 2021, Ceramics International.

[23]  M. Shareefuddin,et al.  Physical and structural studies of cadmium lead boro-tellurite glasses doped with Cu2+ ions , 2021, Journal of Materials Science: Materials in Electronics.

[24]  I. Akkurt,et al.  The influence of MgO on the radiation protection and mechanical properties of tellurite glasses , 2020, Nuclear Engineering and Technology.

[25]  H. Tekin,et al.  Physical, thermal, optical, structural and nuclear radiation shielding properties of Sm2O3 reinforced borotellurite glasses , 2020 .

[26]  H. Saudi,et al.  Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses , 2020 .

[27]  AkkurtIskender,et al.  Radiological parameters of bismuth oxide glasses using the Phy-X/PSD software , 2020 .

[28]  M. Sayyed,et al.  Structural, elastic, optical and γ-ray shielding behavior of Dy3+ ions doped heavy metal incorporated borate glasses , 2020 .

[29]  M. A. Mahdi,et al.  Physical, structural, optical and gamma radiation attenuation properties of germanate-tellurite glasses for shielding applications , 2020 .

[30]  Y. Al‐Hadeethi,et al.  Role of TeO2 in radiation shielding characteristics of calcium boro-tellurite glasses , 2020 .

[31]  M. Sayyed,et al.  Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry , 2020 .

[32]  H. Tekin,et al.  The effective role of La2O3 contribution on zinc borate glasses: radiation shielding and mechanical properties , 2019, Applied Physics A.

[33]  Tevfik Ünaldi,et al.  Effect of low ratio V5+ doping on structural and optical properties of borotellurite semiconducting oxide glasses , 2019, Journal of Materials Science: Materials in Electronics.

[34]  R. Rajaramakrishna,et al.  High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application , 2019, Radiation Physics and Chemistry.

[35]  G. Kilic,et al.  Characterization of Er3+ doped ZnTeTa semiconducting oxide glass , 2019, Journal of Materials Science: Materials in Electronics.

[36]  H. Tekin,et al.  Stuctural, optical and radiation shielding properties of zinc boro-tellurite alumina glasses , 2018, Applied Physics A.

[37]  I. Kityk,et al.  Borotellurite Glasses for Gamma-Ray Shielding: An Exploration of Photon Attenuation Coefficients and Structural and Thermal Properties , 2018, Journal of Electronic Materials.

[38]  S. El-Kameesy,et al.  Investigation of modified zinc borate glasses doped with BaO as a nuclear radiation-shielding material , 2018, Radiation Detection Technology and Methods.

[39]  Mohd Adzir Mahdi,et al.  Vibrational, thermal features, and photon attenuation coefficients evaluation for TeO 2 -B 2 O 3 -BaO-ZnO-Na 2 O-Er 2 O 3 -Pr 6 O 11 glasses as gamma-rays shielding materials , 2018 .

[40]  R. El-Mallawany,et al.  Optical properties and crystallization of bismuth boro-tellurite glasses , 2017 .

[41]  M. Mahdi,et al.  Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications , 2017 .

[42]  I. Kityk,et al.  X-ray photoelectron spectroscopy (XPS) and radiation shielding parameters investigations for zinc molybdenum borotellurite glasses containing different network modifiers , 2017, Journal of Materials Science.

[43]  M. Mahdi,et al.  Physical, structural, thermal, and optical spectroscopy studies of TeO2–B2O3–MoO3–ZnO–R2O (R = Li, Na, and K)/MO (M = Mg, Ca, and Pb) glasses , 2017 .

[44]  M. Bengisu Borate glasses for scientific and industrial applications: a review , 2016, Journal of Materials Science.

[45]  R. El-Mallawany,et al.  Optical Properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses , 2014 .

[46]  H. Ebendorff‐Heidepriem,et al.  Ternary tellurite glasses for the fabrication of nonlinear optical fibres , 2012 .

[47]  A. E. Ersundu,et al.  Crystallization kinetics of the tungsten–tellurite glasses , 2011 .

[48]  E. Culea,et al.  Experimental and theoretical studies of the structure of tellurate-borate glasses network , 2010, Journal of molecular modeling.

[49]  M. Villegas,et al.  Characterisation of glasses in the TeO2–WO3–PbO system , 2009 .

[50]  H. A. A. Sidek,et al.  Synthesis and optical properties of ZnO-TeO2 glass system , 2009 .

[51]  E. Culea,et al.  Structural and electronic properties of tellurite glasses , 2009 .

[52]  E. Culea,et al.  Structure of TeO2 · B2O3 glasses inferred from infrared spectroscopy and DFT calculations , 2008 .

[53]  M. Elkholy,et al.  IR and UV spectral studies for rare earths-doped tellurite glasses , 2008 .

[54]  T. Sato,et al.  Glass with high transparency, their manufacture, and frits for their manufacture , 2002 .

[55]  W. Vogel,et al.  Phase equilibrium, glass-forming, properties and structure of glasses in the TeO2-B2O3 system , 1984 .