Elliptic control problems with gradient constraints—variational discrete versus piecewise constant controls

We consider an elliptic optimal control problem with pointwise bounds on the gradient of the state. To guarantee the required regularity of the state we include the Lr-norm of the control in our cost functional with r>d (d=2,3). We investigate variational discretization of the control problem (Hinze in Comput. Optim. Appl. 30:45–63, 2005) as well as piecewise constant approximations of the control. In both cases we use standard piecewise linear and continuous finite elements for the discretization of the state. Pointwise bounds on the gradient of the discrete state are enforced element-wise. Error bounds for control and state are obtained in two and three space dimensions depending on the value of r.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[3]  Michael Hinze,et al.  Discrete Concepts in PDE Constrained Optimization , 2009 .

[4]  Andreas Günther,et al.  Hamburger Beiträge zur Angewandten Mathematik Finite element approximation of elliptic control problems with constraints on the gradient , 2007 .

[5]  Daniel Z. Zanger The Inhomogeneous Neumann Problem in Lipschitz Domains , 2000 .

[6]  Christoph Ortner,et al.  A priori error estimates for optimal control problems with pointwise constraints on the gradient of the state , 2011, Numerische Mathematik.

[7]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[10]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[11]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[12]  Jürgen Roßmann,et al.  Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods , 2009, Numerische Mathematik.

[13]  Eduardo Casas,et al.  Optimal control of semilinear elliptic equations with pointwise constraints on the gradient of the state , 1993 .

[14]  Monique Dauge,et al.  Neumann and mixed problems on curvilinear polyhedra , 1992 .

[15]  Michael Hinze,et al.  Convergence of a Finite Element Approximation to a State-Constrained Elliptic Control Problem , 2007, SIAM J. Numer. Anal..

[16]  K. Gröger,et al.  AW1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations , 1989 .