Elliptic control problems with gradient constraints—variational discrete versus piecewise constant controls
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[3] Michael Hinze,et al. Discrete Concepts in PDE Constrained Optimization , 2009 .
[4] Andreas Günther,et al. Hamburger Beiträge zur Angewandten Mathematik Finite element approximation of elliptic control problems with constraints on the gradient , 2007 .
[5] Daniel Z. Zanger. The Inhomogeneous Neumann Problem in Lipschitz Domains , 2000 .
[6] Christoph Ortner,et al. A priori error estimates for optimal control problems with pointwise constraints on the gradient of the state , 2011, Numerische Mathematik.
[7] Carlos E. Kenig,et al. The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .
[8] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[9] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[10] P. Grisvard. Singularities in Boundary Value Problems , 1992 .
[11] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..
[12] Jürgen Roßmann,et al. Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods , 2009, Numerische Mathematik.
[13] Eduardo Casas,et al. Optimal control of semilinear elliptic equations with pointwise constraints on the gradient of the state , 1993 .
[14] Monique Dauge,et al. Neumann and mixed problems on curvilinear polyhedra , 1992 .
[15] Michael Hinze,et al. Convergence of a Finite Element Approximation to a State-Constrained Elliptic Control Problem , 2007, SIAM J. Numer. Anal..
[16] K. Gröger,et al. AW1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations , 1989 .