A Case Against Epipolar Geometry
暂无分享,去创建一个
[1] Patrick Gros,et al. Présentation de la théorie des invariants sous une forme utilisable en vision par ordinateur , 1991 .
[2] P. Beardsley,et al. Affine and Projective Structure from Motion , 1992 .
[3] Rajiv Gupta,et al. Stereo from uncalibrated cameras , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[4] H. C. Longuet-Higgins,et al. A computer algorithm for reconstructing a scene from two projections , 1981, Nature.
[5] J. G. Semple,et al. Algebraic Projective Geometry , 1953 .
[6] Thomas S. Huang,et al. Theory of Reconstruction from Image Motion , 1992 .
[7] Roger Mohr,et al. Projective Geometry and Computer Vision , 1993, Handbook of Pattern Recognition and Computer Vision.
[8] B Williamson. The cloning revolution meets human genetics , 1981, Nature.
[9] Thierry Viéville,et al. Canonic Representations for the Geometries of Multiple Projective Views , 1994, ECCV.
[10] Quang-Tuan Luong. Matrice fondamentale et autocalibration en vision par ordinateur , 1992 .
[11] S. Maybank. The projective geometry of ambiguous surfaces , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[12] Thomas Buchanan. The twisted cubic and camera calibration , 1988, Comput. Vis. Graph. Image Process..
[13] Amnon Shashua,et al. Trilinearity in Visual Recognition by Alignment , 1994, ECCV.
[14] S. Maybank. Properties of essential matrices , 1990, Int. J. Imaging Syst. Technol..
[15] Andrew Zisserman,et al. Geometric invariance in computer vision , 1992 .
[16] Olivier D. Faugeras,et al. Motion from point matches: multiplicity of solutions , 1988, Geometry and Robotics.
[17] Olivier D. Faugeras,et al. What can be seen in three dimensions with an uncalibrated stereo rig , 1992, ECCV.
[18] O. D. Faugeras,et al. Camera Self-Calibration: Theory and Experiments , 1992, ECCV.
[19] Andrew Zisserman,et al. Motion From Point Matches Using Affine Epipolar Geometry , 1994, ECCV.
[20] Long Quan,et al. Towards structure from motion for linear features through reference points , 1991, Proceedings of the IEEE Workshop on Visual Motion.
[21] Richard Szeliski,et al. Recovering 3D Shape and Motion from Image Streams Using Nonlinear Least Squares , 1994, J. Vis. Commun. Image Represent..
[22] Philip H. S. Torr,et al. Stochastic Motion Clustering , 1994, ECCV.