Singular perturbation analysis for the reduction of complex chemistry in gaseous mixtures using the entropic structure

We investigate the reduction of complex chemistry in gaseous mixtures. We consider an arbitrarily complex network of reversible reactions. We assume that their rates of progress are given by the law of mass action and that their equilibrium constants are compatible with thermodynamics; it thus provides an entropic structure ( )( ). We study a homogeneous reactor at constant density and internal energy where the temperature can encounter strong variations. The entropic structure brings in a global convex Lyapounov function and the well-posedness of the associated finite dimensional dynamical system. We then assume that a subset of the reactions is constituted of "Fast" reactions. The partial equilibrium constraint is linear in the entropic variable and thus identifies the "Slow" and "Fast" variables uniquely in the concentration space through constant orthogonal projec- tions. It is proved that there exists a convex compact polyhedron invariant by the dynamical system which contains an affine foliation associated with a Tikhonov normal form. The re- duction step is then identified using the orthogonal projection onto the partial equilibrium manifold and proved to be compatible with the entropy production. We prove the global existence of a smooth solution and of an asymptotically stable equilibrium state for both the reduced system and the complete one. A global in time singular perturbation analysis proves that the reduced system on the partial equilibrium manifold approximates the full chemistry system. Asymptotic expansions are obtained.

[1]  J. Anderson,et al.  Hypersonic and High-Temperature Gas Dynamics , 2019 .

[2]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[3]  R. M. Bowen,et al.  On the stoichiometry of chemically reacting materials , 1968 .

[4]  J. Wei,et al.  Axiomatic Treatment of Chemical Reaction Systems , 1962 .

[5]  Pierre Rouchon,et al.  Kinetic scheme reduction via geometric singular perturbation techniques , 1996 .

[6]  R. Aris Prolegomena to the rational analysis of systems of chemical reactions , 1965 .

[7]  Marc Massot,et al.  ASYMPTOTIC STABILITY OF EQUILIBRIUM STATES FOR MULTICOMPONENT REACTIVE FLOWS , 1998 .

[8]  L. C. Woods,et al.  The thermodynamics of fluid systems , by L. C. Woods. Pp 359. £12·50. 1985. ISBN 0-19-856180-6 (Oxford University Press) , 1987, The Mathematical Gazette.

[9]  Frederick J. Krambeck,et al.  The mathematical structure of chemical kinetics in homogeneous single-phase systems , 1970 .

[10]  James C. Keck,et al.  Rate-controlled partial-equilibrium method for treating reacting gas mixtures , 1971 .

[11]  Mitchell D. Smooke,et al.  Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames: A Topical Volume , 1991 .

[12]  Marc Massot,et al.  Entropic structure of multicomponent reactive flows with partial equilibrium reduced chemistry , 2004 .

[13]  F. Horn Necessary and sufficient conditions for complex balancing in chemical kinetics , 1972 .

[14]  Marc Massot Singular perturbation analysis for the reduction of complex chemistry in gaseous mixtures using the entropic structure , 2002 .

[15]  Rud. Wegscheider Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reaktionskinetik homogener Systeme , 1902 .

[16]  James Wei,et al.  The Structure and Analysis of Complex Reaction Systems , 1962 .

[17]  Lloyd S. Shapley,et al.  Mass Action Laws and the Gibbs Free Energy Function , 1965 .

[18]  Rudolf Wegscheider,et al.  Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme , 1901 .

[19]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[20]  Martin Rein Erratum: ‘‘The partial‐equilibrium approximation in reacting flows’’ [Phys. Fluids A 4, 873 (1992)] , 1992 .

[21]  Luigi Vigevano,et al.  An Evaluation of Roe's Scheme Generalizations for Equilibrium Real Gas Flows , 1997 .

[22]  R. Jackson,et al.  General mass action kinetics , 1972 .

[23]  J. D. Ramshaw Partial chemical equilibrium in fluid dynamics , 1980 .

[24]  J. Keck Rate-controlled constrained-equilibrium theory of chemical reactions in complex systems☆ , 1990 .

[25]  V. Giovangigli Multicomponent flow modeling , 1999 .

[26]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[27]  Martin Feinberg,et al.  Multiple steady states for chemical reaction networks of deficiency one , 1995 .

[28]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[29]  V. Yousefian,et al.  A Rate-Controlled Constrained-Equilibrium Thermochemistry Algorithm for Complex Reacting Systems , 1998 .

[30]  M. Feinberg The existence and uniqueness of steady states for a class of chemical reaction networks , 1995 .

[31]  Suleyman A. Gokoglu,et al.  Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories , 1988 .

[32]  F. Spellman Combustion Theory , 2020 .

[33]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[34]  Alexandre Ern,et al.  Multicomponent transport algorithms , 1994 .

[35]  Bruno Sportisse Contribution a la modelisation des ecoulements reactifs : reduction des modeles de cinetique chimique et simulation de la pollution atmospherique , 1999 .