Characterization of rankings generated by linear discriminant anlaysis

Pairwise linear discriminant analysis can be regarded as a process to generate rankings of the populations. But in general, not all rankings are generated. We give a characterization of generated rankings. We also derive some basic properties of this model.

[1]  Akimichi Takemura,et al.  On Rankings Generated by Pairwise Linear Discriminant Analysis ofmPopulations , 1997 .

[2]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[3]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[4]  J. Douglas Carroll,et al.  Toward a new paradigm for the study of multiattribute choice behavior: Spatial and discrete modeling of pairwise preferences. , 1991 .

[5]  Jean-Michel Grandmont,et al.  INTERMEDIATE PREFERENCES AND THE MAJORITY RULE , 1978 .

[6]  Yoshio Takane,et al.  Analysis of contingency tables by ideal point discriminant analysis , 1987 .

[7]  A. Agresti,et al.  Multiway Data Analysis , 1989 .

[8]  Donna L. Hoffman,et al.  Constructing MDS Joint Spaces from Binary Choice Data: A Multidimensional Unfolding Threshold Model for Marketing Research , 1987 .

[9]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[10]  B. Mellers,et al.  Similarity and Choice. , 1994 .

[11]  P. Hanlon,et al.  A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements , 1999 .

[12]  Kenneth P. Bogart,et al.  Introductory Combinatorics , 1977 .

[13]  Andrew Caplin,et al.  ON 64%-MAJORITY RULE , 1988 .

[14]  Brian A. Davey,et al.  Introduction to Lattices and Order: Preface to the second edition , 2002 .

[15]  Robert E. Tarjan,et al.  Notes on Introductory Combinatorics , 1983, Progress in Computer Science.

[16]  A. Takemura,et al.  RANKINGS GENERATED BY SPHERICAL DISCRIMINANT ANALYSIS , 2000 .

[17]  P. Diaconis,et al.  Random walks and hyperplane arrangements , 1998 .

[18]  A. Brøndsted An Introduction to Convex Polytopes , 1982 .

[19]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1958 .

[20]  G. Ziegler Lectures on Polytopes , 1994 .

[21]  Andrew Caplin,et al.  Aggregation and Social Choice: A Mean Voter Theorem , 1991 .

[22]  Andrew Caplin,et al.  Aggregation and Imperfect Competition: On the Existence of Equilibrium , 1991 .

[23]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[24]  Yoshio Takane,et al.  IDEAL POINT DISCRIMINANT ANALYSIS AND ORDERED RESPONSE CATEGORIES , 1989 .

[25]  Andrew Caplin,et al.  Aggregation and Imperfect Competition , 1991 .

[26]  Y. Takane,et al.  Ideal point discriminant analysis , 1987 .