Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations : Mars exploration rover mission and landing sites

The cumulative fractional area covered by rocks versus diameter measured at the Pathfinder site was predicted by a rock distribution model that follows simple exponential functions that approach the total measured rock abundance (19%), with a steep decrease in rocks with increasing diameter. The distribution of rocks >1.5 m diameter visible in rare boulder fields also follows this steep decrease with increasing diameter. The effective thermal inertia of rock populations calculated from a simple empirical model of the effective inertia of rocks versus diameter shows that most natural rock populations have cumulative effective thermal inertias of 1700-2100 J m -2 s -0,5 K -1 and are consistent with the model rock distributions applied to total rock abundance estimates. The Mars Exploration Rover (MER) airbags have been successfully tested against extreme rock distributions with a higher percentage of potentially hazardous triangular buried rocks than observed at the Pathfinder and Viking landing sites. The probability of the lander impacting a >1 m diameter rock in the first 2 bounces is 1.5 m and >2 m diameter, respectively. Finally, the model rock size-frequency distributions indicate that rocks >0.1 m and >0.3 m in diameter, large enough to place contact sensor instruments against and abrade, respectively, should be plentiful within a single sol's drive at the Meridiani and Gusev landing sites.

[1]  Carol R. Stoker,et al.  Analyzing Pathfinder data using virtual reality and superresolved imaging , 1999 .

[2]  N. Bridges,et al.  Mars Pathfinder Landing Site: Evidence for a Change in Wind Regime and Climate from Lander and Orbiter Data , 1999 .

[3]  P. Christensen Regional dust deposits on Mars - Physical properties, age, and history , 1986 .

[4]  N. Bridges,et al.  Selection of the Mars Exploration Rover landing sites , 2003 .

[5]  H. J. Moore,et al.  Estimation of Mars radar backscatter from measured surface rock populations , 1998 .

[6]  R. J. Reid,et al.  Results from the Mars Pathfinder camera. , 1997, Science.

[7]  Douglas E. Bernard,et al.  Crater and rock hazard modeling for Mars landing , 2001 .

[8]  H. J. Moore,et al.  Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials , 1989 .

[9]  G. Neugebauer,et al.  Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft , 1973 .

[10]  W. C. Krumbein Measurement and geological significance of shape and roundness of sedimentary particles , 1941 .

[11]  H. J. Moore,et al.  Selection of the Mars Pathfinder landing site , 1997 .

[12]  B. Jakosky,et al.  Directional Variations In Thermal Emission From Geologic Surfaces , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[13]  H. J. Moore,et al.  The Martian surface layer , 1992 .

[14]  L. Drake Rock texture; an important factor for clast shape studies , 1970 .

[15]  Trent M. Hare,et al.  Digital photogrammetric analysis of the IMP camera images: Mapping the Mars Pathfinder landing site in three dimensions , 1999 .

[16]  F. Haight Handbook of the Poisson Distribution , 1967 .

[17]  Philip R. Christensen,et al.  The spatial distribution of rocks on mars , 1986 .

[18]  J. Head,et al.  Characterization of rock populations on planetary surfaces: Techniques and a preliminary analysis of Mars and Venus , 1981 .

[19]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[20]  A. McEwen,et al.  Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.

[21]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[22]  D. Crown,et al.  Block size distributions on silicic lava flow surfaces: Implications for emplacement conditions , 1998 .

[23]  M E Davies,et al.  Early views of the martian surface from the Mars Orbiter Camera of Mars Global Surveyor. , 1998, Science.

[24]  M. Golombek The Mars Pathfinder Mission and Science Results , 1999 .

[25]  R. Folk,et al.  Shape Development On Tahiti-Nui , 1970 .

[26]  Paul DuBois,et al.  MySQL Reference Manual , 2002 .

[27]  M. Golombek The Mars Pathfinder Mission , 1997 .

[28]  N. Bridges,et al.  Erosion rates on Mars and implications for climate change: Constraints from the Pathfinder landing site , 2000 .

[29]  J. Gilvarry,et al.  Fracture of Brittle Solids. II. Distribution Function for Fragment Size in Single Fracture (Experimental) , 1961 .

[30]  K. Pye Sediment transport and depositional processes , 1994 .

[31]  M. Golombek,et al.  Size‐frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions , 1997 .

[32]  W. K. Brown,et al.  Derivation of the Weibull distribution based on physical principles and its connection to the Rosin–Rammler and lognormal distributions , 1995 .

[33]  W. K. Brown,et al.  Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash , 1989 .

[34]  Nathan T. Bridges,et al.  Aeolian features and processes at the Mars Pathfinder landing site , 1999 .

[35]  J. Gilvarry Fracture of Brittle Solids. IV. Two-Dimensional Distribution Function for Fragment Size in Single Fracture (Theoretical) , 1962 .

[36]  Kenneth L. Tanaka,et al.  General geology and geomorphology of the Mars Pathfinder landing site , 1999 .

[37]  R. Folk,et al.  Pebbles in the Lower Colorado River, Texas a Study in Particle Morphogenesis , 1958, The Journal of Geology.

[38]  M. Golombek,et al.  Analyses of Rock Size-Frequency Distributions and Morphometry of Modified Hawaiian Lava Flows: Implications for Future Martian Landing Sites , 2000 .

[39]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[40]  J. Keller,et al.  Surface-Material Maps of Viking Landing Sites on Mars , 1991 .

[41]  N. Bridges,et al.  Mars Pathfinder landing site: Evidence for a change in wind regime from lander and orbiter data , 2000 .

[42]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[43]  D. Hartmann,et al.  Principles, methods, and application of particle size analysis: The hyperbolic distribution , 1991 .

[44]  P. Rosin The Laws Governing the Fineness of Powdered Coal , 1933 .

[45]  B. Jakosky On the thermal properties of Martian fines , 1986 .

[46]  N. C. Janke The shape of rock particles, a critical review , 1981 .

[47]  H. J. Moore,et al.  Assessment of Mars Pathfinder landing site predictions , 1999 .

[48]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[49]  P. Christensen,et al.  Martian dust mantling and surface composition: Interpretation of thermophysical properties , 1982 .

[50]  M. Malin Rock populations as indicators of geologic processes. , 1988 .

[51]  M. Mellon,et al.  High‐resolution thermal inertia mapping of Mars: Sites of exobiological interest , 2000 .

[52]  O. Barndorff-Nielsen,et al.  The pattern of natural size distributions , 1980 .