The aromaticity of the stannole dianion.

[1]  Masaichi Saito,et al.  The anions and dianions of group 14 metalloles , 2005 .

[2]  M. Saito,et al.  Synthesis of Stannole Anion by Alkylation of Stannole Dianion , 2003 .

[3]  M. Nieger,et al.  Zinn-Analoga von Arduengo-Carbenen: Synthese von 1,3,2λ2-Diazastannolen und Transfer von Sn-Atomen zwischen einem 1,3,2λ2-Diazastannol und einem Diazadien Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft unterstützt. Teile davon wurden als Poster auf der Jaherstagung Chemie 2001 der GDCh , 2002 .

[4]  M. Nieger,et al.  Tin analogues of arduengo carbenes : Synthesis of 1,3,2λ2-diazastannoles and transfer of sn atoms between a 1,3,2λ2-diazastannole and a diazadiene , 2002 .

[5]  M. Saito,et al.  Formation of the first monoanion and dianion of stannole. , 2002, Chemical communications.

[6]  M. Yoshioka,et al.  Synthesis and Structures of Two 9,10-Dihydro-9,10-distannaanthracenes , 2001 .

[7]  P. Boudjouk,et al.  Unique Bis-η5/η1 Bonding in a Dianionic Germole. Synthesis and Structural Characterization of the Dilithium Salt of the 2,3,4,5-Tetraethyl Germole Dianion , 1999 .

[8]  P. Meunier,et al.  Group 14 Metalloles, Ionic Species and Coordination Compounds , 1999 .

[9]  Bernd Goldfuss and,et al.  Aromaticity in Group 14 Metalloles: Structural, Energetic, and Magnetic Criteria , 1997 .

[10]  A. Rheingold,et al.  Synthesis and Study of Cyclic π-Systems Containing Silicon and Germanium. The Question of Aromaticity in Cyclopentadienyl Analogues , 1996 .

[11]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[12]  D. Powell,et al.  The Dianion of Tetraphenylgermole is Aromatic , 1996 .

[13]  Thomas N. Müller,et al.  Das Dianion von Tetraphenylgermol ist aromatisch , 1996 .

[14]  A. Rheingold,et al.  Silolyl Anions and Silole Dianions: Structure of [K([18]crown‐6)+]2[C4Me4Si2−] , 1996 .

[15]  T. D. Tilley,et al.  Silolyl-Anionen und Silol-Dianionen: Struktur von [K([18]krone-6)+]2C4Me4Si2−† , 1996 .

[16]  Frank Hampel,et al.  Aromaticity in Silole Dianions: Structural, Energetic, and Magnetic Aspects , 1996 .

[17]  T. Mueller,et al.  DILITHIUM DERIVATIVE OF TETRAPHENYLSILOLE : AN ETA 1-ETA 5 DILITHIUM STRUCTURE , 1995 .

[18]  A. Rheingold,et al.  Synthesis and Structure of a Free Germacyclopentadienide Ion: [Li([12]crown‐4)2][C4Me4GeSi(SiMe3)3] , 1995 .

[19]  D. Powell,et al.  Synthesis, solid-state structure, and reduction of 1,1-dichloro-2,3,4,5-tetramethylsilole , 1995 .

[20]  P. Jutzi,et al.  The dimethylaminoethyl-tetramethylcyclopentadienyl ligand in germanium(II) chemistry: synthesis, properties and X-ray crystal structural data of (Me2NCH2CH2) Me4C5GeCl , 1995 .

[21]  T. D. Tilley,et al.  Synthese und Struktur eines freien Germacyclopentadienid‐Ions im Kristall: [Li([12]krone‐4)2][C4Me4GeSi(SiMe3)3] , 1995 .

[22]  S. Castellino,et al.  Synthesis and Characterization of Two Aromatic Silicon-Containing Dianions:The 2,3,4,5-Tetraphenylsilole Dianion and the 1,1'-Disila-2,2',3,3',4,4',5,5'-Octaphenylfulvalene Dianion , 1994 .

[23]  Giovanni Luca Cascarano,et al.  Completion and refinement of crystal structures with SIR92 , 1993 .

[24]  P. Boudjouk,et al.  A stable aromatic species containing silicon. Synthesis and characterization of the 1-tert-butyl-2,3,4,5-tetraphenyl-1-silacyclopentadienide anion , 1993 .

[25]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[26]  A. Sekiguchi,et al.  Chemistry of organosilicon compounds. 297. Lithium pentakis(dimethylsilyl)cyclopentadienide and formation of isolable coordination complexes with ketones: [(R2C:O)Li.{C5(SiMe2H)5}] , 1993 .

[27]  L. Paquette,et al.  Structure of Lithium Isodicyclopentadienide and Lithium Cyclopentadienide in Tetrahydrofuran Solution. A Combined NMR, IGLO, and MNDO Study , 1990 .

[28]  P. Dufour,et al.  C-METHYLATED (GERMACYCLOPENTADIENYL)LITHIUM , 1990 .

[29]  C. H. Kim,et al.  Synthesis and reactivity of 1,1-disodio-2,3,4,5-tetraphenyl-1-silacyclopentadiene , 1990 .

[30]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[31]  W. Rhee,et al.  LITHIUM 1,1-DICYCLOPENTADIENYL-1-BROMO-2,3,4,5-TETRAPHENYLSTANNOLE, A FIVE-COORDINATED TIN(IV) HETEROCYCLE WITH PSEUDOROTATING AXIAL- AND EQUITORIAL-FLUXIONAL ETA(1)-CYCLOPENTADIENYL GROUPS IN A (R4SNBR)(-) ANION , 1975 .

[32]  John A. Pople,et al.  Self‐consistent molecular orbital methods. XV. Extended Gaussian‐type basis sets for lithium, beryllium, and boron , 1975 .

[33]  R. Cox,et al.  Lithium-7 NMR studies of aromatic ion pairs , 1974 .

[34]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[35]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[36]  R. Cox,et al.  Lithium-7 nuclear magnetic resonance investigation of the structure of some aromatic ion pairs , 1971 .

[37]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[38]  R. Corriu,et al.  Group 14 metalloles. 2. Ionic species and coordination compounds , 1990 .

[39]  E. Radzio-Andzelm,et al.  Preparation of small atomic gaussian basis sets for molecular calculations , 1983 .