Functional mapping of growth and development

Understanding how an organism develops into a fully functioning adult from a mass of undifferentiated cells may reveal different strategies that allow the organism to survive under limiting conditions. Here, we review an analytical model for characterizing quantitative trait loci (QTLs) that underlie variation in growth trajectories and developmental timing. This model, called functional mapping, incorporates fundamental principles behind biological processes or networks that are bridged with mathematical functions into a statistical mapping framework. Functional mapping estimates parameters that determine the shape and function of a particular biological process, thus providing a flexible platform to test biologically meaningful hypotheses regarding the complex relationships between gene action and development.

[1]  Wei Zhao,et al.  A unifying statistical model for QTL mapping of genotype x sex interaction for developmental trajectories. , 2004, Physiological genomics.

[2]  Wei Zhao,et al.  Structured Antedependence Models for Functional Mapping of Multiple Longitudinal Traits , 2005, Statistical applications in genetics and molecular biology.

[3]  P. Jolicoeur,et al.  Prenatal and postnatal growth and allometry of stature, head circumference, and brain weight in québec children , 1993, American journal of human biology : the official journal of the Human Biology Council.

[4]  Rongling Wu,et al.  A joint model for nonparametric functional mapping of longitudinal trajectory and time-to-event , 2006, BMC Bioinformatics.

[5]  Wei Zhao,et al.  Functional mapping for quantitative trait loci governing growth rates: a parametric model. , 2003, Physiological genomics.

[6]  Rongling Wu,et al.  Nonparametric Functional Mapping of Quantitative Trait Loci Underlying Programmed Cell Death , 2008, Statistical applications in genetics and molecular biology.

[7]  G. Casella,et al.  A General Framework for Analyzing the Genetic Architecture of Developmental Characteristics , 2004, Genetics.

[8]  M. Kenward,et al.  Parametric modelling of growth curve data: An overview , 2001 .

[9]  C. Gieger,et al.  Identification of ten loci associated with height highlights new biological pathways in human growth , 2008, Nature Genetics.

[10]  M. Nowak,et al.  Dynamics of cancer progression , 2004, Nature Reviews Cancer.

[11]  David M. Evans,et al.  Genome-wide association analysis identifies 20 loci that influence adult height , 2008, Nature Genetics.

[12]  S. Aggrey Logistic nonlinear mixed effects model for estimating growth parameters. , 2009, Poultry science.

[13]  R. Wu,et al.  Functional mapping for genetic control of programmed cell death. , 2006, Physiological genomics.

[14]  James H. Brown,et al.  A general model for ontogenetic growth , 2001, Nature.

[15]  Wei Zhao,et al.  A non-stationary model for functional mapping of complex traits , 2005, Bioinform..

[16]  B. Bogin,et al.  Evolutionary perspective on human growth. , 1999, Annual review of anthropology.

[17]  Rongling Wu,et al.  A Bayesian Algorithm for Functional Mapping of Dynamic Complex Traits , 2009, Algorithms.

[18]  Rudolf A. Raff,et al.  Evo-devo: the evolution of a new discipline , 2000, Nature Reviews Genetics.

[19]  Runze Li,et al.  Analysis of Longitudinal Data With Semiparametric Estimation of Covariance Function , 2007, Journal of the American Statistical Association.

[20]  William R. Atchley,et al.  Ontogeny, Timing of Development, and Genetic Variance-Covariances Structure , 1984, The American Naturalist.

[21]  Rongling Wu,et al.  Nonparametric Functional Mapping of Quantitative Trait Loci , 2009, Biometrics.

[22]  C. Geyer,et al.  The genetic analysis of age-dependent traits: modeling the character process. , 1999, Genetics.

[23]  Shah Ebrahim,et al.  Common variants in the GDF5-UQCC region are associated with variation in human height , 2008, Nature Genetics.

[24]  J. Cheverud,et al.  A Mechanistic Model for Genetic Machinery of Ontogenetic Growth , 2004, Genetics.

[25]  L. Bertalanffy Quantitative Laws in Metabolism and Growth , 1957 .

[26]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[27]  Rongling Wu,et al.  Statistical and Computational Pharmacogenomics , 2008 .

[28]  Zhongwen Huang,et al.  A Conceptual Framework for Mapping Quantitative Trait Loci Regulating Ontogenetic Allometry , 2007, PloS one.

[29]  R. Wu,et al.  An algorithm for molecular dissection of tumor progression , 2005, Journal of mathematical biology.

[30]  Pierre Jolicoeur,et al.  Asymptotic models for the longitudinal growth of human stature , 1992, American journal of human biology : the official journal of the Human Biology Council.

[31]  T. Sumiya,et al.  Relationships between biological parameters of Japanese growth of height , 2001 .

[32]  Rongling Wu,et al.  Statistical Genetics of Quantitative Traits: Linkage, Maps and QTL , 2007 .

[33]  G. Casella,et al.  Functional Mapping of Quantitative Trait Loci Underlying Growth Trajectories Using a Transform‐Both‐Sides Logistic Model , 2004, Biometrics.

[34]  Pier Paolo Delsanto,et al.  Does tumor growth follow a "universal law"? , 2003, Journal of theoretical biology.

[35]  MORPHOMETRIC HETEROCHRONY AND THE EVOLUTION OF GROWTH , 2003, Evolution; international journal of organic evolution.

[36]  Wei Zhao,et al.  Mechanistic mapping of ontogenetic growth based on biological principles. , 2005, Growth, development, and aging : GDA.

[37]  E. Lander,et al.  Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. , 1989, Genetics.

[38]  S. Rice Theoretical Approaches to the Evolution of Development and Genetic Architecture , 2008, Annals of the New York Academy of Sciences.

[39]  S. Pletcher,et al.  Statistical models for estimating the genetic basis of repeated measures and other function-valued traits. , 2000, Genetics.

[40]  P. Klinkhamer Plant allometry: The scaling of form and process , 1995 .

[41]  W. G. Hill,et al.  Estimating the covariance structure of traits during growth and ageing, illustrated with lactation in dairy cattle. , 1994, Genetical research.

[42]  G. Casella,et al.  Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. , 2002, Genetics.

[43]  J. Cheverud,et al.  Quantitative trait loci for murine growth. , 1996, Genetics.

[44]  T. Fenchel,et al.  Bioenergetics and Growth , 2022 .

[45]  Pier Paolo Delsanto,et al.  The dynamic evolution of the power exponent in a universal growth model of tumors. , 2005, Journal of theoretical biology.

[46]  Richa Saxena,et al.  A common variant of HMGA2 is associated with adult and childhood height in the general population , 2007, Nature Genetics.

[47]  S. Rice,et al.  The analysis of ontogenetic trajectories: when a change in size or shape is not heterochrony. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Wu,et al.  Functional mapping — how to map and study the genetic architecture of dynamic complex traits , 2006, Nature Reviews Genetics.

[49]  F. J. Richards A Flexible Growth Function for Empirical Use , 1959 .

[50]  P. Diggle Analysis of Longitudinal Data , 1995 .

[51]  Karin Meyer,et al.  Random regressions to model phenotypic variation in monthly weights of Australian beef cows , 2000 .

[52]  Hanlon Fong,et al.  Developmental Physiology and Aging , 1974, The Yale Journal of Biology and Medicine.

[53]  K. McNAMARA Evolutionary change and heterochrony , 1995 .

[54]  L. von Bertalanffy Quantitative Laws in Metabolism and Growth , 1957, The Quarterly Review of Biology.