An Elite Decision Making Harmony Search Algorithm for Optimization Problem

This paper describes a new variant of harmony search algorithm which is inspired by a well-known item “elite decision making.” In the new algorithm, the good information captured in the current global best and the second best solutions can be well utilized to generate new solutions, following some probability rule. The generated new solution vector replaces the worst solution in the solution set, only if its fitness is better than that of the worst solution. The generating and updating steps and repeated until the near-optimal solution vector is obtained. Extensive computational comparisons are carried out by employing various standard benchmark optimization problems, including continuous design variables and integer variables minimization problems from the literature. The computational results show that the proposed new algorithm is competitive in finding solutions with the state-of-the-art harmony search variants.

[1]  Günter Rudolph,et al.  An Evolutionary Algorithm for Integer Programming , 1994, PPSN.

[2]  G. Hogg,et al.  UNCONSTRAINED DISCRETE NONLINEAR PROGRAMMING , 1979 .

[3]  Zong Woo Geem,et al.  Music Composition Using Harmony Search Algorithm , 2009, EvoWorkshops.

[4]  Yin-Fu Huang,et al.  Self-adaptive harmony search algorithm for optimization , 2010, Expert Syst. Appl..

[5]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[6]  Zong Woo Geem,et al.  Novel derivative of harmony search algorithm for discrete design variables , 2008, Appl. Math. Comput..

[7]  Zong Woo Geem,et al.  Music-Inspired Harmony Search Algorithm , 2009 .

[8]  M. Tamer Ayvaz,et al.  Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and meta-heuristic harmony search algorithm , 2007 .

[9]  Zong Woo Geem,et al.  Harmony Search Algorithm for Solving Sudoku , 2007, KES.

[10]  Tonghua Zhang,et al.  Overview of Applications and Developments in the Harmony Search Algorithm , 2009 .

[11]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[12]  M. Mahdavi,et al.  ARTICLE IN PRESS Available online at www.sciencedirect.com , 2007 .

[13]  M. Jaberipour,et al.  Two improved harmony search algorithms for solving engineering optimization problems , 2010 .

[14]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[15]  Ponnuthurai N. Suganthan,et al.  An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[17]  Zong Woo Geem,et al.  Harmony Search Applications in Industry , 2008, Soft Computing Applications in Industry.

[18]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[19]  Quan-Ke Pan,et al.  A local-best harmony search algorithm with dynamic subpopulations , 2010 .

[20]  Mehmet Polat Saka,et al.  Optimum Geometry Design of Geodesic Domes Using Harmony Search Algorithm , 2007 .

[21]  Zong Woo Geem,et al.  Ecological optimization using harmony search , 2008 .

[22]  R. G. Fenton,et al.  A Comparison of Numerical Optimization Methods for Engineering Design , 1974 .

[23]  J. F. Price,et al.  On descent from local minima , 1971 .

[24]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[25]  Katya Scheinberg,et al.  On the convergence of derivative-free methods for unconstrained optimization , 1997 .

[26]  Rajesh Kumar,et al.  An Intelligent Tuned Harmony Search algorithm for optimisation , 2012, Inf. Sci..

[27]  Michael N. Vrahatis,et al.  Particle swarm optimization for integer programming , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[28]  Jing J. Liang,et al.  A self-adaptive global best harmony search algorithm for continuous optimization problems , 2010, Appl. Math. Comput..

[29]  Mahamed G. H. Omran,et al.  Global-best harmony search , 2008, Appl. Math. Comput..