Compliant ferroelastic domains in epitaxial Pb(Zr,Ti)O3 thin films

Ordered patterns of highly compliant ferroelastic domains have been created by use of tensile strained epitaxial Pb(Zr,Ti)O3 thin films, of very low defect density, grown on DyScO3 substrates. The effect of 180° switching on well-ordered a/c 90° domain patterns is investigated by a combination of transmission electron microscopy, piezoelectric force microscopy, and X-ray diffraction. It is shown that ferroelastic a-domains, having an in-plane polarization, can be created and completely removed on a local level by an out-of-plane electric field. The modifications of the ferroelastic domain pattern can be controlled by varying the parameters used during switching with a piezoresponse force microscope to produce the desired arrangement.

[1]  P. Mokry,et al.  Elastic aspects of domain quadruplets in ferroics , 2005 .

[2]  A Lubk,et al.  Flexoelectric rotation of polarization in ferroelectric thin films. , 2011, Nature materials.

[3]  James F. Scott,et al.  A model for fatigue in ferroelectric perovskite thin films , 2000 .

[4]  M. Bibes,et al.  Nanoscale polarization switching mechanisms in multiferroic BiFeO3 thin films , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  S. Gevorgian,et al.  Ferroelectric thin films: Review of materials, properties, and applications , 2006 .

[6]  Intrinsic Ferroelectric Properties of Strained Tetragonal PbZr0.2Ti0.8O3 Obtained on Layer–by–Layer Grown, Defect–Free Single–Crystalline Films , 2006, cond-mat/0601335.

[7]  C. Jia,et al.  Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3(110). , 2003 .

[8]  L. Martin,et al.  Nanoscale control of domain architectures in BiFeO3 thin films. , 2009, Nano letters.

[9]  Patrycja Paruch,et al.  Conduction at Domain Walls in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films , 2011, Advanced materials.

[10]  A. Tagantsev,et al.  Free-electron gas at charged domain walls in insulating BaTiO3 , 2013, Nature Communications.

[11]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[12]  M. Alexe,et al.  Increased ferroelastic domain mobility in ferroelectric thin films and its use in nano-patterned capacitors , 2006 .

[13]  J. Melngailis,et al.  Dynamics of ferroelastic domains in ferroelectric thin films , 2003, Nature materials.

[14]  N. Zakharov,et al.  Threading dislocations in epitaxial ferroelectric PbZr0.2Ti0.8O3 films and their effect on polarization backswitching , 2006 .

[15]  J. E. ten Elshof,et al.  Atomically Defined Rare‐Earth Scandate Crystal Surfaces , 2010 .

[16]  B. Noheda,et al.  Thickness scaling of ferroelastic domains in PbTiO3 films on DyScO3 , 2013 .

[17]  Sergei V. Kalinin,et al.  Tunable metallic conductance in ferroelectric nanodomains. , 2012, Nano letters.

[18]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[19]  S. Trolier-McKinstry,et al.  Thin Film Piezoelectrics for MEMS , 2004 .

[20]  J. Ouyang,et al.  Formation of 90° elastic domains during local 180° switching in epitaxial ferroelectric thin films , 2004 .

[21]  Chang-Beom Eom,et al.  Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching , 2013, Nature Communications.

[22]  R. Waser,et al.  Depolarizing-field-mediated 180° switching in ferroelectric thin films with 90° domains , 2002 .

[23]  Z. Suo,et al.  Persistent step-flow growth of strained films on vicinal substrates. , 2005, Physical review letters.

[24]  J. Ouyang,et al.  Engineering of Self‐Assembled Domain Architectures with Ultra‐high Piezoelectric Response in Epitaxial Ferroelectric Films , 2007 .