A family of constacyclic codes over $\mathbb{F}_{2^{m}}+u\mathbb{F}_{2^{m}}$ and application to quantum codes

We introduce a Gray map from $\mathbb{F}_{2^{m}}+u\mathbb{F}_{2^{m}}$ to $\mathbb{F}_{2}^{2m}$ and study $(1+u)$-constacyclic codes over $\mathbb{F}_{2^{m}}+u\mathbb{F}_{2^{m}},$ where $u^{2}=0.$ It is proved that the image of a $(1+u)$-constacyclic code length $n$ over $\mathbb{F}_{2^{m}}+u\mathbb{F}_{2^{m}}$ under the Gray map is a distance-invariant quasi-cyclic code of index $m$ and length $2mn$ over $\mathbb{F}_{2}.$ We also prove that every code of length $2mn$ which is the Gray image of cyclic codes over $\mathbb{F}_{2^{m}}+u\mathbb{F}_{2^{m}}$ of length $n$ is permutation equivalent to a binary quasi-cyclic code of index $m.$ Furthermore, a family of quantum error-correcting codes obtained from the Calderbank-Shor-Steane (CSS) construction applied to $(1+u)$-constacyclic codes over $\mathbb{F}_{2^{m}}+u\mathbb{F}_{2^{m}}.$

[1]  Koichi Betsumiya,et al.  Type II codes over F2m+uF2m , 2004, Discret. Math..

[2]  Wenping Ma,et al.  QUANTUM CODES FROM CYCLIC CODES OVER FINITE RING , 2009 .

[3]  Jacques Wolfmann,et al.  Negacyclic and cyclic codes over Z4 , 1999, IEEE Trans. Inf. Theory.

[4]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[5]  H. Dinh Constacyclic Codes of Length $2^s$ Over Galois Extension Rings of ${\BBF}_{2}+u{\BBF}_2$ , 2009, IEEE Transactions on Information Theory.

[6]  Irfan Siap,et al.  Quantum codes from cyclic codes over a class of nonchain rings , 2015, 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).

[7]  Masaaki Harada,et al.  Type II Codes Over F2 + u F2 , 1999, IEEE Trans. Inf. Theory.

[8]  Shixin Zhu,et al.  New quantum codes from dual-containing cyclic codes over finite rings , 2016, Quantum Inf. Process..

[9]  Suat Karadeniz,et al.  (1+v)-Constacyclic codes over F2+uF2+vF2+uvF2 , 2011, J. Frankl. Inst..

[10]  Q DinhHai Constacyclic codes of length 2sover Galois extension rings of F2 + uF2 , 2009 .

[11]  San Ling,et al.  Zpk+1-Linear codes , 2002, IEEE Trans. Inf. Theory.

[12]  Shixin Zhu,et al.  (1+u) constacyclic and cyclic codes over F2+uF2 , 2006, Appl. Math. Lett..

[13]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[14]  Shixin Zhu,et al.  A family of constacyclic codes over F2 + uF2 + vF2 + uvF2 , 2012, J. Syst. Sci. Complex..

[15]  Maria Carmen V. Amarra,et al.  On (1-u) -cyclic codes over Fpk + uFpk , 2008, Appl. Math. Lett..

[16]  Xueliang Li,et al.  QUANTUM CODES CONSTRUCTED FROM BINARY CYCLIC CODES , 2004 .

[17]  Taher Abualrub,et al.  Constacyclic codes over F2+uF2 , 2009, J. Frankl. Inst..

[18]  Minjia Shi,et al.  Some Results on Cyclic Codes Over ${F}_{2}+v{F}_{2}$ , 2010, IEEE Transactions on Information Theory.

[19]  Bahattin Yildiz,et al.  Weights modulo pe of linear codes over rings , 2007, Des. Codes Cryptogr..

[20]  Xiusheng Liu,et al.  Quantum codes from linear codes over finite chain rings , 2017, Quantum Inf. Process..

[21]  T. Aaron Gulliver,et al.  Quantum codes over rings , 2014 .

[22]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[23]  Parampalli Udaya,et al.  Cyclic Codes and Self-Dual Codes Over F2 + uF2 , 1999, IEEE Trans. Inf. Theory.