Selecting the optimum portfolio using fuzzy compromise programming and Sharpe's single-index model

Different approaches besides the traditional Markowitz's model have been proposed in the literature to analyze portfolio selection problems. Among them, Compromise Programming (CP) is a suitable multiobjective programming technique which allows the handling of several objectives in those situations in which the existence of a high level of conflict between criteria does not permit the simultaneous optimization of all the considered objectives. When objectives and constraints are in an imprecise environment Fuzzy CP arises as a suitable solving method. Imprecision will be quantified by means of fuzzy numbers that represent the continuous possibility distributions for fuzzy parameters and hence place a constraint on the possible values the parameters may assume. In this paper a new Fuzzy Compromise Programming approach is proposed based on the obtaining of the minimum fuzzy distance to the fuzzy ideal solution of the portfolio selection problem. Once this fuzzy distance has been obtained the second step consists of finding a crisp decision vector, an optimal portfolio, implying a fuzzy distance to the ideal solution the more accurate as possible to the fuzzy minimum distance previously obtained.

[1]  Roger M. Y. Ho,et al.  Goal programming and extensions , 1976 .

[2]  Shouyang Wang,et al.  A compromise solution to mutual funds portfolio selection with transaction costs , 2001, Eur. J. Oper. Res..

[3]  Amelia Bilbao-Terol,et al.  Solving a multiobjective possibilistic problem through compromise programming , 2005, Eur. J. Oper. Res..

[4]  Carlos Romero,et al.  A general structure of achievement function for a goal programming model , 2004, Eur. J. Oper. Res..

[5]  J. Buckley Solving possibilistic linear programming , 1989 .

[6]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[7]  A. Charnes,et al.  Management Models and Industrial Applications of Linear Programming , 1961 .

[8]  P. Yu A Class of Solutions for Group Decision Problems , 1973 .

[9]  Amelia Bilbao-Terol,et al.  Fuzzy compromise programming for portfolio selection , 2006, Appl. Math. Comput..

[10]  Amelia Bilbao-Terol,et al.  A fuzzy goal programming approach to portfolio selection , 2001, Eur. J. Oper. Res..

[11]  W. Sharpe Portfolio Theory and Capital Markets , 1970 .

[12]  Sang M. Lee,et al.  Goal programming for decision analysis , 1972 .

[13]  Mehrdad Tamiz,et al.  An interactive three-stage model for mutual funds portfolio selection ☆ , 2007 .

[14]  David Pla-Santamaria,et al.  Selecting portfolios for mutual funds , 2004 .

[15]  E. Ahmed,et al.  On multiobjective optimization in portfolio management , 2005, Appl. Math. Comput..

[16]  Silvio Giove,et al.  An interval portfolio selection problem based on regret function , 2006, Eur. J. Oper. Res..

[17]  Julián Molina Luque Toma de decisiones con criterios múltiples en variable continua y entera. Implementación computacional y aplicaciones a la economía , 2000 .

[18]  Dorota Kuchta,et al.  Fuzzy capital budgeting , 2000, Fuzzy Sets Syst..

[19]  Mehrdad Tamiz,et al.  Goal Programming in the Period 1990–2000 , 2003 .

[20]  Amelia Bilbao-Terol,et al.  An extension of Sharpe's single-index model: portfolio selection with expert betas , 2006, J. Oper. Res. Soc..

[21]  M. Calzi Towards a general setting for the fuzzy mathematics of finance , 1990 .

[22]  J. Buckley,et al.  Fuzzy Mathematics in Economics and Engineering , 2002 .

[23]  James P. Ignizio,et al.  A Review of Goal Programming: A Tool for Multiobjective Analysis , 1978 .

[24]  M. Amparo Vila,et al.  On a canonical representation of fuzzy numbers , 1998, Fuzzy Sets Syst..

[25]  Hossein Bidgoli,et al.  Encyclopedia of Information Systems , 2002, Encyclopedia of Information Systems.

[26]  Mehrdad Tamiz,et al.  Goal programming for decision making: An overview of the current state-of-the-art , 1998, Eur. J. Oper. Res..

[27]  E. Elton Modern portfolio theory and investment analysis , 1981 .

[28]  Peijun Guo,et al.  Portfolio selection based on upper and lower exponential possibility distributions , 1999, Eur. J. Oper. Res..

[29]  Abraham Charnes,et al.  Optimal Estimation of Executive Compensation by Linear Programming , 1955 .

[30]  Xiaoxia Huang,et al.  Fuzzy chance-constrained portfolio selection , 2006, Appl. Math. Comput..

[31]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[32]  Wei-Guo Zhang,et al.  On admissible efficient portfolio selection policy , 2005, Appl. Math. Comput..

[33]  M. Amparo Vila,et al.  A fuzziness measure for fuzzy numbers: Applications , 1998, Fuzzy Sets Syst..

[34]  Fouad Ben Abdelaziz,et al.  Multi-objective stochastic programming for portfolio selection , 2007, Eur. J. Oper. Res..

[35]  Enrique Ballestero,et al.  Portfolio selection on the Madrid Exchange: a compromise programming model , 2003 .

[36]  Amelia Bilbao-Terol,et al.  On constructing expert Betas for single-index model , 2007, Eur. J. Oper. Res..

[37]  Simon French,et al.  Applied Decision Analysis. , 1985 .

[38]  Carlos Romero,et al.  Portfolio Selection: A Compromise Programming Solution , 1996 .