Relating Real Crowds with Virtual Crowds

This chapter describes some reflections concerning the challenge of capturing information from real crowds to relate it with virtual crowds. Three parts are discussed here: (i) a study undertaken on the motion and behavior of real crowds, where the goal is to identify some patterns of the behaviors of real people to be used subsequently in virtual crowds, (ii) discussion of a few sociological crowd aspects, and (iii) computer vision methods as automatic ways to capture information from real life to guide virtual crowds.

[1]  Helmut E. Bez,et al.  A practical adaptive approach for dynamic background subtraction using an invariant colour model and object tracking , 2005, Pattern Recognit. Lett..

[2]  Lubos Buzna,et al.  Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions , 2005, Transp. Sci..

[3]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[5]  Frank Schweitzer,et al.  Self-Organization of Complex Structures: From Individual to Collective Dynamics - Some Introductory , 1997 .

[6]  Azriel Rosenfeld,et al.  Tracking Groups of People , 2000, Comput. Vis. Image Underst..

[7]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[9]  D. Helbing,et al.  Self-Organization Phenomena in Pedestrian Crowds , 1998, cond-mat/9806152.

[10]  Sergio A. Velastin,et al.  People tracking in surveillance applications , 2006, Image Vis. Comput..

[11]  Daniel Thalmann,et al.  Hierarchical Model for Real Time Simulation of Virtual Human Crowds , 2001, IEEE Trans. Vis. Comput. Graph..

[12]  Soraia Raupp Musse,et al.  Modeling individual behaviors in crowd simulation , 2003, Proceedings 11th IEEE International Workshop on Program Comprehension.

[13]  Sameer Singh,et al.  Video analysis of human dynamics - a survey , 2003, Real Time Imaging.

[14]  Fatih Murat Porikli,et al.  Covariance Tracking using Model Update Based on Lie Algebra , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Reinhard Koch,et al.  A Color Similarity Measure for Robust Shadow Removal in Real Time , 2003, VMV.

[17]  Xuelong Li,et al.  Cast shadow detection in video segmentation , 2005, Pattern Recognit. Lett..

[18]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[19]  Sei-Wang Chen,et al.  Pedestrian detection and tracking at crossroads , 2004, Pattern Recognit..

[20]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[21]  David R. Bull,et al.  Projective image restoration using sparsity regularization , 2013, 2013 IEEE International Conference on Image Processing.

[22]  E. R. Davies,et al.  Machine vision - theory, algorithms, practicalities , 2004 .

[23]  Fang-Hsuan Cheng,et al.  Real time multiple objects tracking and identification based on discrete wavelet transform , 2006, Pattern Recognit..

[24]  C. Rabut,et al.  Vectorial interpolation using radial-basis-like functions , 2002 .

[25]  Youtian Du,et al.  Recognizing Interaction Activities using Dynamic Bayesian Network , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[26]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[27]  David C. Brogan,et al.  Realistic human walking paths , 2003, Proceedings 11th IEEE International Workshop on Program Comprehension.

[28]  Cedric Nishan Canagarajah,et al.  Perceptually optimised sign language video coding , 2003, 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003.

[29]  John C. Davis,et al.  Contouring: A Guide to the Analysis and Display of Spatial Data , 1992 .

[30]  Sergio A. Velastin,et al.  Motion-based machine vision techniques for the management of large crowds , 1999, ICECS'99. Proceedings of ICECS '99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357).

[31]  Tieniu Tan,et al.  Recent developments in human motion analysis , 2003, Pattern Recognit..

[32]  Sergio A. Velastin,et al.  Intelligent distributed surveillance systems: a review , 2005 .

[33]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Imran N. Junejo,et al.  Multi feature path modeling for video surveillance , 2004, ICPR 2004.

[35]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[36]  Soraia Raupp Musse,et al.  A Background Subtraction Model Adapted to Illumination Changes , 2006, 2006 International Conference on Image Processing.

[37]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Quan Pan,et al.  Real-time multiple objects tracking with occlusion handling in dynamic scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[39]  Tieniu Tan,et al.  People tracking based on motion model and motion constraints with automatic initialization , 2004, Pattern Recognit..

[40]  Tim J. Ellis,et al.  Learning semantic scene models from observing activity in visual surveillance , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[41]  Jessica K. Hodgins,et al.  Reactive pedestrian path following from examples , 2004, The Visual Computer.

[42]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[43]  Michael E. Roloff Interpersonal Communication: The Social Exchange Approach , 1982 .

[44]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Shaogang Gong,et al.  Recognition of group activities using dynamic probabilistic networks , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[46]  Richard Bowden,et al.  A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes , 2003, Image Vis. Comput..

[47]  Max Lu,et al.  Robust and efficient foreground analysis for real-time video surveillance , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[48]  Yang Wang,et al.  A probabilistic approach for foreground and shadow segmentation in monocular image sequences , 2005, Pattern Recognit..

[49]  Liang-Gee Chen,et al.  Efficient moving object segmentation algorithm using background registration technique , 2002, IEEE Trans. Circuits Syst. Video Technol..

[50]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[51]  Norman I. Badler,et al.  Pedestrians: creating agent behaviors through statistical analysis of observation data , 2001, Proceedings Computer Animation 2001. Fourteenth Conference on Computer Animation (Cat. No.01TH8596).

[52]  Stephen Chenney,et al.  Flow tiles , 2004, SCA '04.

[53]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[54]  Pierre Mannoni La psychologie collective , 1985 .