Dynamic Modelling under Uncertainty: The Case of Trypanosoma brucei Energy Metabolism

Kinetic models of metabolism require detailed knowledge of kinetic parameters. However, due to measurement errors or lack of data this knowledge is often uncertain. The model of glycolysis in the parasitic protozoan Trypanosoma brucei is a particularly well analysed example of a quantitative metabolic model, but so far it has been studied with a fixed set of parameters only. Here we evaluate the effect of parameter uncertainty. In order to define probability distributions for each parameter, information about the experimental sources and confidence intervals for all parameters were collected. We created a wiki-based website dedicated to the detailed documentation of this information: the SilicoTryp wiki (http://silicotryp.ibls.gla.ac.uk/wiki/Glycolysis). Using information collected in the wiki, we then assigned probability distributions to all parameters of the model. This allowed us to sample sets of alternative models, accurately representing our degree of uncertainty. Some properties of the model, such as the repartition of the glycolytic flux between the glycerol and pyruvate producing branches, are robust to these uncertainties. However, our analysis also allowed us to identify fragilities of the model leading to the accumulation of 3-phosphoglycerate and/or pyruvate. The analysis of the control coefficients revealed the importance of taking into account the uncertainties about the parameters, as the ranking of the reactions can be greatly affected. This work will now form the basis for a comprehensive Bayesian analysis and extension of the model considering alternative topologies.

[1]  M. Walkinshaw,et al.  Phosphoglycerate mutase from Trypanosoma brucei is hyperactivated by cobalt in vitro, but not in vivo. , 2011, Metallomics : integrated biometal science.

[2]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[3]  R. Burton,et al.  Equilibrium constant of phosphoryl transfer from adenosine triphosphate to galactose in the presence of galactokinase. , 1961, The Biochemical journal.

[4]  Barbara M. Bakker,et al.  Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Boris N. Kholodenko,et al.  Biothermokinetics of the living cell , 1996 .

[6]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[7]  Barbara M. Bakker,et al.  Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. , 2001, The Biochemical journal.

[8]  H. Stibbs,et al.  Alteration of free serum amino acids in voles infected with Trypanosoma brucei gambiense. , 1977, The Journal of parasitology.

[9]  F. Collins,et al.  Principles of Biochemistry , 1937, The Indian Medical Gazette.

[10]  J. F. Ryley,et al.  Studies on the metabolism of the Protozoa. 7. Comparative carbohydrate metabolism of eleven species of trypanosome. , 1956, The Biochemical journal.

[11]  Barbara M. Bakker,et al.  Experimental and in Silico Analyses of Glycolytic Flux Control in Bloodstream Form Trypanosoma brucei* , 2005, Journal of Biological Chemistry.

[12]  Hans V. Westerhoff,et al.  Control of the glycolytic flux in Trypanosoma brucei: why control can shift suddenly , 1996 .

[13]  Edda Klipp,et al.  Prediction of enzyme kinetic parameters based on statistical learning. , 2006, Genome informatics. International Conference on Genome Informatics.

[14]  P T GRANT,et al.  The catabolism of glucose by strains of Trypanosoma rhodesiense. , 1957, The Biochemical journal.

[15]  F. Opperdoes,et al.  The inhibition of pyruvate transport across the plasma membrane of the bloodstream form of Trypanosoma brucei and its metabolic implications. , 1995, The Biochemical journal.

[16]  Antje Chang,et al.  BRENDA, the enzyme information system in 2011 , 2010, Nucleic Acids Res..

[17]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[18]  Jan-Hendrik S. Hofmeyr,et al.  Modelling cellular systems with PySCeS , 2005, Bioinform..

[19]  J. Hall,et al.  Carbon-13 nuclear-magnetic-resonance studies of glucose catabolism by Trypanosoma brucei gambiense. , 1982, European journal of biochemistry.

[20]  Frédéric Bringaud,et al.  Alanine aminotransferase of Trypanosoma brucei– a key role in proline metabolism in procyclic life forms , 2009, The FEBS journal.

[21]  R. Alberty Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactants. , 1998, Archives of biochemistry and biophysics.

[22]  Andreas Seyfang,et al.  Specificity of glucose transport in Trypanosoma brucei , 1991 .

[23]  J Van Roy,et al.  Trypanosoma brucei contains a 2,3-bisphosphoglycerate independent phosphoglycerate mutase. , 2000, European journal of biochemistry.

[24]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[25]  R. Eisenthal,et al.  Specificity and kinetics of hexose transport in Trypanosoma brucei. , 1989, Biochimica et biophysica acta.

[26]  Barbara M. Bakker,et al.  Glycolysis in Bloodstream Form Trypanosoma brucei Can Be Understood in Terms of the Kinetics of the Glycolytic Enzymes* , 1997, The Journal of Biological Chemistry.

[27]  Wilfred D. Stein,et al.  Transport and Diffusion Across Cell Membranes , 1986 .

[28]  Wallace Wurth,et al.  Fundamentals of Biochemistry: , 1936, Nature.

[29]  James C. Liao,et al.  Ensemble modeling and related mathematical modeling of metabolic networks , 2009 .

[30]  Robert N. Goldberg,et al.  Thermodynamics of enzyme-catalyzed reactions - a database for quantitative biochemistry , 2004, Bioinform..

[31]  J. Liao,et al.  Ensemble modeling of metabolic networks. , 2008, Biophysical journal.

[32]  Stefanie Widder,et al.  The SBML ODE Solver Library: a native API for symbolic and fast numerical analysis of reaction networks , 2006, Bioinform..

[33]  F. Opperdoes,et al.  Glycolytic enzymes of Trypanosoma brucei. Simultaneous purification, intraglycosomal concentrations and physical properties. , 1986, European journal of biochemistry.

[34]  W. Cleland,et al.  The kinetic mechanism of glycerokinase. , 1974, The Journal of biological chemistry.

[35]  I. Birol,et al.  Metabolic control analysis under uncertainty: framework development and case studies. , 2004, Biophysical journal.

[36]  D. Hammond,et al.  Trypanosoma brucei: the effect of glycerol on the anaerobic metabolism of glucose. , 1980, Molecular and biochemical parasitology.

[37]  O MEYERHOF,et al.  Synthetic action of phosphatase; equilibria of biological esters. , 1949, The Journal of biological chemistry.

[38]  H. Westerhoff,et al.  A probabilistic approach to identify putative drug targets in biochemical networks , 2011, Journal of The Royal Society Interface.

[39]  R Docampo,et al.  A pyruvate-proton symport and an H+-ATPase regulate the intracellular pH of Trypanosoma brucei at different stages of its life cycle. , 2000, The Biochemical journal.

[40]  R. Eisenthal,et al.  The aerobic/anaerobic transition of glucose metabolism in Trypanosoma brucei , 1985, FEBS letters.

[41]  Barbara M. Bakker,et al.  Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes , 2008, Proceedings of the National Academy of Sciences.

[42]  V. Hatzimanikatis,et al.  Modeling of uncertainties in biochemical reactions , 2011, Biotechnology and bioengineering.

[43]  Barbara M. Bakker,et al.  What Controls Glycolysis in Bloodstream Form Trypanosoma brucei?* , 1999, The Journal of Biological Chemistry.

[44]  F. Opperdoes,et al.  Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Girolami,et al.  Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species , 2010, Science Signaling.

[46]  F. Opperdoes,et al.  Glycerol kinase of Trypanosoma brucei. Cloning, molecular characterization and mutagenesis. , 2000, European journal of biochemistry.

[47]  J. Haanstra,et al.  The Power of Network-based Drug Design and the Interplay Between Metabolism and Gene Expression in Trypanosoma Brucei , 2009 .

[48]  P. Michels,et al.  Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei. , 2010, Molecular and biochemical parasitology.