Development of a reduced toluene reference fuel (TRF)-2,5-dimethylfuran-polycyclic aromatic hydrocarbon (PAH) mechanism for engine applications

[1]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[2]  R. Reitz,et al.  Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models , 1995 .

[3]  R. Reitz,et al.  A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling , 1997 .

[4]  A. Lifshitz,et al.  Thermal Decomposition of 2,5-Dimethylfuran. Experimental Results and Computer Modeling , 1998 .

[5]  Zhiyu Han,et al.  Spray/wall interaction models for multidimensional engine simulation , 2000 .

[6]  John E. Dec,et al.  Comparisons of diesel spray liquid penetration and vapor fuel distributions with in-cylinder optical measurements , 2000 .

[7]  K. Akihama,et al.  Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature , 2001 .

[8]  C. Law,et al.  A directed relation graph method for mechanism reduction , 2005 .

[9]  Yuriy Román‐Leshkov,et al.  Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates , 2007, Nature.

[10]  R. Reitz,et al.  A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels , 2008 .

[11]  M. Mascal,et al.  Direct, high-yield conversion of cellulose into biofuel. , 2008, Angewandte Chemie.

[12]  John M Simmie,et al.  Formation enthalpies and bond dissociation energies of alkylfurans. The strongest CX bonds known? , 2009, The journal of physical chemistry. A.

[13]  Rolf D. Reitz,et al.  Modeling Soot Formation Using Reduced Polycyclic Aromatic Hydrocarbon Chemistry in n-Heptane Lifted Flames With Application to Low Temperature Combustion , 2009 .

[14]  Zuo-hua Huang,et al.  Measurements of Laminar Burning Velocities and Markstein Lengths of 2,5-Dimethylfuran−Air−Diluent Premixed Flames , 2009 .

[15]  Rolf D. Reitz,et al.  A comprehensive collision model for multi-dimensional engine spray computations. , 2009 .

[16]  R. Reitz,et al.  Validation of a Grid Independent Spray Model and Fuel Chemistry Mechanism for Low Temperature Diesel Combustion , 2009 .

[17]  Rolf D. Reitz,et al.  A vaporization model for discrete multi-component fuel sprays , 2009 .

[18]  Kyle E. Niemeyer,et al.  Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis , 2009, 1607.05079.

[19]  Hongming Xu,et al.  Laminar Burning Velocities of 2,5-Dimethylfuran Compared with Ethanol and Gasoline , 2010 .

[20]  Hongming Xu,et al.  Combustion and Emissions of 2,5-Dimethylfuran in a Direct-Injection Spark-Ignition Engine , 2010 .

[21]  Akshay D. Patel,et al.  Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes , 2011 .

[22]  P. Glaude,et al.  Measurements of Laminar Flame Velocity for Components of Natural Gas , 2011 .

[23]  C. Afonso,et al.  5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications , 2011 .

[24]  J. Simmie,et al.  Ab initio study of the decomposition of 2,5-dimethylfuran. , 2011, The journal of physical chemistry. A.

[25]  Chao Jin,et al.  Progress in the production and application of n-butanol as a biofuel , 2011 .

[26]  Rolf D. Reitz,et al.  A combustion model for IC engine combustion simulations with multi-component fuels , 2011 .

[27]  Zuo-hua Huang,et al.  Laminar burning velocities and flame instabilities of 2,5-dimethylfuran–air mixtures at elevated pressures , 2011 .

[28]  Hongming Xu,et al.  Speciation of hydrocarbon and carbonyl emissions of 2,5-dimethylfuran combustion in a DISI engine , 2012 .

[29]  P. Glaude,et al.  PROGRESS IN DETAILED KINETIC MODELING OF THE COMBUSTION OF OXYGENATED COMPONENTS OF BIOFUELS. , 2012, Energy.

[30]  Ritchie Daniel,et al.  Combustion performance of 2,5-dimethylfuran blends using dual-injection compared to direct-injection in a SI engine , 2012 .

[31]  B. Sirjean,et al.  Theoretical study of the thermal decomposition of the 5-methyl-2-furanylmethyl radical. , 2012, The journal of physical chemistry. A.

[32]  Ming Jia,et al.  Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology , 2012 .

[33]  G. Marin,et al.  The thermal decomposition of 2,5-dimethylfuran , 2012 .

[34]  Pierre-Alexandre Glaude,et al.  Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran. , 2013, The journal of physical chemistry. A.

[35]  Quanchang Zhang,et al.  Diesel engine combustion and emissions of 2,5-dimethylfuran-diesel blends with 2-ethylhexyl nitrate addition , 2013 .

[36]  B. Sirjean,et al.  Theoretical study of the reaction 2,5-dimethylfuran + H → products☆ , 2013 .

[37]  Mingfa Yao,et al.  Combustion and emissions of 2,5-dimethylfuran addition on a diesel engine with low temperature combustion , 2013 .

[38]  Pierre-Alexandre Glaude,et al.  A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation. , 2013, Proceedings of the Combustion Institute. International Symposium on Combustion.

[39]  Mingfa Yao,et al.  Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction , 2013 .

[40]  Changzhao Jiang,et al.  Laminar Burning Characteristics of 2-Methylfuran Compared with 2,5-Dimethylfuran and Isooctane , 2013 .

[41]  Ming Jia,et al.  Improvement on a skeletal chemical kinetic model of iso-octane for internal combustion engine by using a practical methodology , 2013 .

[42]  Zunqing Zheng,et al.  Effects of fuel properties on combustion and emissions under both conventional and low temperature combustion mode fueling 2,5-dimethylfuran/diesel blends , 2013 .

[43]  Quanchang Zhang,et al.  Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion , 2013 .

[44]  Mingfa Yao,et al.  Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends , 2013 .

[45]  Ritchie Daniel,et al.  Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine , 2013 .

[46]  Ming Jia,et al.  Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel with Application to Gasoline Surrogate Fuels for Computational Fluid Dynamics Engine Simulation , 2013 .

[47]  P. Glaude,et al.  A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. , 2013, Combustion and flame.

[48]  Shijie Liu,et al.  Selective Transformation of 5-Hydroxymethylfurfural into the Liquid Fuel 2,5-Dimethylfuran over Carbon-Supported Ruthenium , 2014 .

[49]  Pierre-Alexandre Glaude,et al.  Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part II: 2-Methylfuran. , 2014, Combustion and flame.

[50]  Shijie Liu,et al.  Chemoselective Hydrogenation of Biomass-Derived 5‑Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran , 2014 .

[51]  Zunqing Zheng,et al.  PRIMARY COMBUSTION INTERMEDIATES IN LOW-PRESSURE PREMIXED LAMINAR 2,5-DIMETHYLFURAN/OXYGEN/ARGON FLAMES , 2014 .

[52]  K. Ebitani,et al.  Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic catalyst , 2014 .

[53]  Kyle E. Niemeyer,et al.  Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels , 2014, 1405.3745.

[54]  C. Naumann,et al.  A Single Pulse Shock Tube Study on the Pyrolysis of 2,5-Dimethylfuran , 2015 .

[55]  Mazen A. Eldeeb,et al.  Reactivity Trends in Furan and Alkyl Furan Combustion , 2014 .

[56]  Zhanjun Cheng,et al.  Experimental and kinetic modeling study of 2,5-dimethylfuran pyrolysis at various pressures , 2014 .

[57]  Zunqing Zheng,et al.  Experimental and numerical study on different dual-fuel combustion modes fuelled with gasoline and diesel , 2014 .

[58]  Andrea D’Anna,et al.  Effect of furans on particle formation in diffusion flames: An experimental and modeling study , 2015 .

[59]  Germán Aroca,et al.  Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance , 2015 .

[60]  Xingcai Lu,et al.  Recent progress in the development of biofuel 2,5-dimethylfuran. , 2015 .

[61]  P. Glaude,et al.  Influence of substituted furans on the formation of Polycyclic Aromatic Hydrocarbons in flames , 2015 .

[62]  Mingfa Yao,et al.  Experimental and kinetic modeling study of a rich and a stoichiometric low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flames , 2015 .

[63]  Mingfa Yao,et al.  A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclic-aromatic hydrocarbon predictions , 2015 .

[64]  Zuo-hua Huang,et al.  Experimental and Kinetic Study on the Ignition Delay Times of 2,5- Dimethylfuran and the Comparison to 2‑Methylfuran and Furan , 2015 .

[65]  Haji Hassan Masjuki,et al.  Performance and emission assessment of diesel–biodiesel–ethanol/bioethanol blend as a fuel in diesel engines: A review , 2015 .

[66]  Rolf D. Reitz,et al.  Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines , 2015 .

[67]  María U. Alzueta,et al.  Novel aspects in the pyrolysis and oxidation of 2,5-dimethylfuran , 2015 .

[68]  B. Saha,et al.  Current technologies, economics, and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates. , 2015, ChemSusChem.

[69]  Heinz Pitsch,et al.  Ignition characteristics of a bio-derived class of saturated and unsaturated furans for engine applications , 2015 .

[70]  Kyle E. Niemeyer,et al.  On the importance of graph search algorithms for DRGEP-based mechanism reduction methods , 2011, ArXiv.