THEORY FOR THE MULTILOOP DC SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE MAGNETOMETER AND EXPERIMENTAL VERIFICATION

A theoretical analysis of the multiloop dc superconducting quantum interference device (SQUID) magnetometer fabricated from low‐Tc (transition temperature) or high‐Tc materials is presented. Using simple analytic formulas, the essential parameters of a multiloop magnetometer can be estimated: the effective area A, the effective SQUID inductance L, the transfer function VΦ, and the flux density noise √SB. The theoretical predictions are compared with experimental results of seven different low‐Tc versions and good agreement is found. Based on the analytical description, a high‐Tc magnetometer design with a 7 mm pickup coil and 16 parallel loops giving a sufficiently small SQUID inductance L≂145 pH is presented. At T=77 K a voltage swing 2δV≂8 μV and a white noise √SB≂8 fT/√Hz are predicted assuming a critical current I0=20 μA and a normal resistance R=2 Ω per junction and a damping resistance Rd=R across the SQUID inductance.

[1]  D. Drung,et al.  Integrated DC SQUID magnetometer with high dV/dB , 1991 .

[2]  J. Waldram,et al.  Superconducting Quantum Interference Devices and their Applications , 1982 .

[3]  W. Chang,et al.  The inductance of a superconducting strip transmission line , 1979 .

[4]  G. Albrecht,et al.  A Monolithic Thin Film DC-SQUID , 1979, February 16.

[5]  D. Drung Recent low temperature SQUID developments , 1994, IEEE Transactions on Applied Superconductivity.

[6]  J. E. Zimmerman,et al.  Sensitivity Enhancement of Superconducting Quantum Interference Devices through the Use of Fractional‐Turn Loops , 1971 .

[7]  K. Enpuku,et al.  Noise characteristics of a dc SQUID with a resistively shunted inductance. II. Optimum damping , 1986 .

[8]  I. Modena,et al.  A thin‐film second‐order gradiometer with integrated dc‐SQUID , 1993 .

[9]  H Koch,et al.  An integrated DC SQUID magnetometer with variable additional positive feedback , 1994 .

[10]  Frederick Warren Grover,et al.  Inductance Calculations: Working Formulas and Tables , 1981 .

[11]  D. Drung,et al.  Plasma nitridation process for the fabrication of all‐refractory Josephson junctions , 1990 .

[12]  Dietmar Drung,et al.  Low‐noise high‐speed dc superconducting quantum interference device magnetometer with simplified feedback electronics , 1990 .

[13]  V. Foglietti,et al.  Behavior of a multiloop dc superconducting quantum interference device , 1982 .

[14]  R. Voss Noise characteristics of an ideal shunted Josephson junction , 1981 .

[15]  F. Dettmann,et al.  Thin-film DC SQUID gradiometer , 1978 .

[16]  K. Enpuku,et al.  Modulation Voltage of High Tc DC Superconducting Quantum Interference Device with Damping Resistance , 1994 .

[17]  Keiji Enpuku,et al.  Effect of thermal noise on the characteristics of a high Tc superconducting quantum interference device , 1993 .

[18]  Mark B. Ketchen,et al.  Planar coupling scheme for ultra low noise DC SQUIDs , 1981 .

[19]  J. Bruines,et al.  Comment on: “Dc SQUID: Noise and optimization” by Tesche and Clarke , 1982 .

[20]  H. Koch,et al.  An electronic second-order gradiometer for biomagnetic applications in clinical shielded rooms , 1993, IEEE Transactions on Applied Superconductivity.

[21]  Dietmar Drung,et al.  A 37 channel DC SQUID magnetometer system , 1991 .

[22]  Harold Weinstock,et al.  The New superconducting electronics , 1993 .

[23]  John Clarke,et al.  dc SQUID magnetometers from single layers of YBa2Cu3O7-x , 1993 .

[24]  W. Jutzi,et al.  Hysteretic noise in dc SQUIDs , 1985 .

[25]  Gen Uehara,et al.  Evaluation of Drung-type magnetometers for multi-channel systems , 1994 .

[26]  Risto J. Ilmoniemi,et al.  SQUID magnetometers for low-frequency applications , 1989 .

[27]  W. Vodel,et al.  An ultra low noise DC SQUID system for biomagnetic research , 1992 .

[28]  S. W. Goodyear,et al.  Low‐noise YBa2Cu3O7 ‐PrBa2Cu3O7 multiturn flux transformers , 1994 .

[29]  Heinz Lübbig,et al.  Superconducting Devices and Their Applications , 1992 .

[30]  P. Schrijner,et al.  Simulation and optimization of a dc SQUID with finite capacitance , 1984 .