Hermessem: A semantic-aware framework for the management and analysis of our LifeSteps

The explosion of available positioning information associated with the inferred or user-declared semantics of the respective locations, already contributes in what is called the big data era, posing new challenges to the mobility data management and mining research community. In this paper, motivated by a series of challenges set in [11], we present a unified framework for the management and the analysis of our LifeSteps, i.e. data objects that include both (raw) trajectories and their semantic counterpart. In particular, we provide solutions for developing real-world semantic-aware Moving Object Database (MOD) and Trajectory Data Warehouse (TDW) systems and we devise respective query processing algorithms. Our experimental study on synthetic data including synchronized raw (i.e., GPS log) and semantic (i.e., diaries) information, verifies the effectiveness and efficiency of the proposed framework.

[1]  Jiawei Han,et al.  Selective Materialization: An Efficient Method for Spatial Data Cube Construction , 1998, PAKDD.

[2]  Nikos Pelekis,et al.  HERMES: A Trajectory DB Engine for Mobility-Centric Applications , 2015, Int. J. Knowl. Based Organ..

[3]  Renzo Orsini,et al.  Spatio-temporal Aggregations in Trajectory Data Warehouses , 2007, DaWaK.

[4]  Nikos Pelekis,et al.  Hermoupolis: a semantic trajectory generator in the data science era , 2015, SIGSPACIAL.

[5]  Christian S. Jensen,et al.  A framework for efficient spatial web object retrieval , 2012, The VLDB Journal.

[6]  Stefano Spaccapietra,et al.  Semantic trajectories modeling and analysis , 2013, CSUR.

[7]  Nikos Pelekis,et al.  Visual Mobility Analysis using T-Warehouse , 2011, Int. J. Data Warehous. Min..

[8]  Dieter Pfoser,et al.  Novel Approaches to the Indexing of Moving Object Trajectories , 2000, VLDB.

[9]  Stefano Spaccapietra,et al.  SeMiTri: a framework for semantic annotation of heterogeneous trajectories , 2011, EDBT/ICDT '11.

[10]  Dino Pedreschi,et al.  Unveiling the complexity of human mobility by querying and mining massive trajectory data , 2011, The VLDB Journal.

[11]  Jiawei Han,et al.  Graph cube: on warehousing and OLAP multidimensional networks , 2011, SIGMOD '11.

[12]  José Antônio Fernandes de Macêdo,et al.  Mob-Warehouse: A Semantic Approach for Mobility Analysis with a Trajectory Data Warehouse , 2013, ER Workshops.

[13]  Ralf Hartmut Güting,et al.  SECONDO: A Platform for Moving Objects Database Research and for Publishing and Integrating Research Implementations , 2010, IEEE Data Eng. Bull..

[14]  Nikos Pelekis,et al.  Mobility Data Management and Exploration , 2014, Springer New York.

[15]  Timos K. Sellis,et al.  Spatio-temporal indexing for large multimedia applications , 1996, Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems.

[16]  Davy Janssens,et al.  On the Management and Analysis of Our LifeSteps , 2014, SKDD.

[17]  Salvatore Orlando,et al.  A general framework for trajectory data warehousing and visual OLAP , 2014, GeoInformatica.

[18]  Renato Fileto,et al.  A Semantic Model for Movement Data Warehouses , 2014, DOLAP '14.

[19]  SaltonGerard,et al.  Term-weighting approaches in automatic text retrieval , 1988 .

[20]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[21]  Hamid Pirahesh,et al.  Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.