Treatment of L-Fuzzy contexts with absent values

This work shows how to extract the missing information from an interval-valued L-Fuzzy context with some unknown values. Absent values are replaced using implications between attributes with high levels of support and confidence. Three kinds of implications are defined and analyzed for this purpose. We apply these results to an electrical network simulation, where the estimated relations between faulty power lines and voltage measurements can be compared with their real values.

[1]  Jerry M. Mendel,et al.  A vector similarity measure for linguistic approximation: Interval type-2 and type-1 fuzzy sets , 2008, Inf. Sci..

[2]  V. Novák,et al.  Discovering the world with fuzzy logic , 2000 .

[3]  Gerd Stumme,et al.  Computing iceberg concept lattices with T , 2002, Data Knowl. Eng..

[4]  Ramón Fuentes-González,et al.  Contexts with Multiple Weighted Values , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[5]  Thierry Denoeux,et al.  Clustering interval-valued proximity data using belief functions , 2004, Pattern Recognit. Lett..

[6]  Wei-Zhi Wu,et al.  Attribute reduction based on evidence theory in incomplete decision systems , 2008, Inf. Sci..

[7]  Wenfei Fan,et al.  Keys with Upward Wildcards for XML , 2001, DEXA.

[8]  Gerd Stumme,et al.  Begriffliche Wissensverarbeitung: Methoden und Anwendungen , 2000 .

[9]  Ramón Fuentes-González,et al.  The study of the interval-valued contexts , 2001, Fuzzy Sets Syst..

[10]  Ramón Fuentes-González,et al.  Construction of the L-fuzzy concept lattice , 1998, Fuzzy Sets Syst..

[11]  Ramón Fuentes-González,et al.  Ambiguity and fuzziness measures defined on the set of closed intervals in [0, 1] , 2007, Inf. Sci..

[12]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[13]  Ramón Fuentes-González,et al.  An application of the L-Fuzzy Concept Theory to the short-circuit detection , 2007, 2007 IEEE International Fuzzy Systems Conference.

[14]  Ramón Fuentes-González,et al.  Concept lattices defined from implication operators , 2000, Fuzzy Sets Syst..

[15]  Thierry Denoeux,et al.  Multidimensional scaling of fuzzy dissimilarity data , 2002, Fuzzy Sets Syst..

[16]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[17]  Gerd Stumme,et al.  Efficient Data Mining Based on Formal Concept Analysis , 2002, DEXA.

[18]  Thierry Denoeux,et al.  Multidimensional scaling of interval-valued dissimilarity data , 2000, Pattern Recognit. Lett..

[19]  Silke Pollandt Datenanalyse mit Fuzzy-Begriffen , 2000 .

[20]  Radim Belohlávek,et al.  Concept lattices and order in fuzzy logic , 2004, Ann. Pure Appl. Log..

[21]  Radim Bělohlávek,et al.  Fuzzy galois connections and fuzzy concept lattices: from binary relations to conceptual structures , 2000 .

[22]  Ramón Fuentes-González,et al.  Treatment of the incomplete information in L-Fuzzy contexts , 2005, EUSFLAT Conf..

[23]  M MendelJerry,et al.  A vector similarity measure for linguistic approximation , 2008 .

[24]  Radim Belohlávek,et al.  Reduction and a Simple Proof of Characterization of Fuzzy Concept Lattices , 2001, Fundam. Informaticae.

[25]  Marzena Kryszkiewicz,et al.  Rough Set Approach to Incomplete Information Systems , 1998, Inf. Sci..

[26]  Ramón Fuentes-González,et al.  The study of the L-fuzzy concept lattice , 1994 .