Speculation on the generality of the backward stepwise view of PCA

A novel backwards viewpoint of Principal Component Analysis is proposed. In a wide variety of cases, that fall into the area of Object Oriented Data Analysis, this viewpoint is seen to provide much more natural and accessable analogs of PCA than the standard forward viewpoint. Examples considered here include principal curves, landmark based shape analysis, medial shape representation and trees as data.

[1]  Suresh Venkatasubramanian,et al.  The geometric median on Riemannian manifolds with application to robust atlas estimation , 2009, NeuroImage.

[2]  Stephen R. Aylward,et al.  Volume rendering of segmented image objects , 2002, IEEE Transactions on Medical Imaging.

[3]  H. Le MEAN SIZE-AND-SHAPES AND MEAN SHAPES: A GEOMETRIC POINT OF VIEW , 1995 .

[4]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[5]  T. Hastie,et al.  Principal Curves , 2007 .

[6]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[7]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[8]  Gabor Pataki,et al.  A Principal Component Analysis for Trees , 2008, 0810.0944.

[9]  P. Thomas Fletcher,et al.  Statistics of shape via principal geodesic analysis on Lie groups , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[10]  Roger Koenker THE MEDIAN IS THE MESSAGE : TOWARD THE FRÉCHET MEDIAN , 2007 .

[11]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[12]  I. Dryden,et al.  Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging , 2009, 0910.1656.

[13]  T. Auton Applied Functional Data Analysis: Methods and Case Studies , 2004 .

[14]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[15]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[16]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[17]  A. Munk,et al.  INTRINSIC SHAPE ANALYSIS: GEODESIC PCA FOR RIEMANNIAN MANIFOLDS MODULO ISOMETRIC LIE GROUP ACTIONS , 2007 .

[18]  Milan Sonka,et al.  Segmentation, Skeletonization, and Branchpoint Matching - A Fully Automated Quantitative Evaluation of Human Intrathoracic Airway Trees , 2002, MICCAI.

[19]  R. Tibshirani,et al.  Adaptive Principal Surfaces , 1994 .

[20]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[21]  A. Munk,et al.  Intrinsic shape analysis: Geodesic principal component analysis for Riemannian manifolds modulo Lie group actions. Discussion paper with rejoinder. , 2010 .

[22]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[23]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[24]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[25]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[26]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[27]  W. Marsden I and J , 2012 .

[28]  J. Marron,et al.  Object oriented data analysis: Sets of trees , 2007, 0711.3147.

[29]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[30]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.