High-Performance 500 V Quasi- and Fully-Vertical GaN-on-Si pn Diodes

This letter demonstrates quasi- and fully vertical GaN-on-Si pn diodes with record performance. The optimized device structure employs a highly conductive (<inline-formula> <tex-math notation="LaTeX">$\text{N}_{\mathrm { {D}}}> 10^{\mathrm { {20}}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{\mathrm { {-3}}}$ </tex-math></inline-formula>) current collecting layer and a lightly carbon-doped drift layer. With this optimization, a differential specific <inline-formula> <tex-math notation="LaTeX">$on$ </tex-math></inline-formula> -resistance (<inline-formula> <tex-math notation="LaTeX">${R} _{ {\mathrm{ ON}}}$ </tex-math></inline-formula>) of 0.8–1 <inline-formula> <tex-math notation="LaTeX">$\text{m}\Omega \cdot $ </tex-math></inline-formula>cm<inline-formula> <tex-math notation="LaTeX">$^{\mathrm { {2}}}$ </tex-math></inline-formula>, a breakdown voltage (BV) over 500 V, and a high forward current (~kA/cm<inline-formula> <tex-math notation="LaTeX">$^{\mathrm { {2}}}$ </tex-math></inline-formula>) were demonstrated. Excellent <inline-formula> <tex-math notation="LaTeX">${R} _{ \mathrm{ ON}}$ </tex-math></inline-formula> and BV performance up to 300 °C were also obtained. A small reverse recovery time of 50 ns was demonstrated under switching conditions. With Baliga’s figure of merit over 0.32 GW/cm<inline-formula> <tex-math notation="LaTeX">$^{\mathrm { {2}}}$ </tex-math></inline-formula>, these devices show the great potential of low-cost GaN-on-Si vertical devices for future power applications.

[1]  D. Bour,et al.  1.5-kV and 2.2-m (Omega ) -cm (^{2}) Vertical GaN Transistors on Bulk-GaN Substrates , 2014 .

[2]  Huili Grace Xing,et al.  GaN-on-GaN p-n power diodes with 3.48 kV and 0.95 mΩ-cm2: A record high figure-of-merit of 12.8 GW/cm2 , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[3]  Huili Grace Xing,et al.  1.7-kV and 0.55- $\text{m}\Omega \cdot \text {cm}^{2}$ GaN p-n Diodes on Bulk GaN Substrates With Avalanche Capability , 2016, IEEE Electron Device Letters.

[4]  K. Hsieh,et al.  Suppression of Current Leakage Along Mesa Surfaces in GaN-Based p-i-n Diodes , 2015, IEEE Electron Device Letters.

[5]  R. Chu,et al.  High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth , 2016 .

[6]  Tsutomu Ina,et al.  1.8 mΩ·cm2 vertical GaN-based trench metal–oxide–semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation , 2015 .

[7]  Takashi Egawa,et al.  Novel fully vertical GaN p–n diode on Si substrate grown by metalorganic chemical vapor deposition , 2016 .

[8]  T. Mishima,et al.  Over 3.0 $\hbox{GW/cm}^{2}$ Figure-of-Merit GaN p-n Junction Diodes on Free-Standing GaN Substrates , 2011, IEEE Electron Device Letters.

[9]  Takehiro Yoshida,et al.  Vertical GaN p-n Junction Diodes With High Breakdown Voltages Over 4 kV , 2015, IEEE Electron Device Letters.

[10]  Don Disney,et al.  High Voltage Vertical GaN p-n Diodes With Avalanche Capability , 2013, IEEE Transactions on Electron Devices.

[11]  Tetsu Kachi,et al.  Which are the Future GaN Power Devices for Automotive Applications, Lateral Structures or Vertical Structures? , 2011 .

[12]  S. S. Park,et al.  Current–voltage and reverse recovery characteristics of bulk GaN p-i-n rectifiers , 2003 .

[13]  T. Palacios,et al.  N-Face GaN/AlGaN HEMTs Fabricated Through Layer Transfer Technology , 2009, IEEE Electron Device Letters.

[14]  M. Kiyama,et al.  High-breakdown-voltage pn-junction diodes on GaN substrates , 2007 .

[15]  Xing Lu,et al.  Fully Vertical GaN p-i-n Diodes Using GaN-on-Si Epilayers , 2016, IEEE Electron Device Letters.

[16]  T. Palacios,et al.  GaN-on-Si Vertical Schottky and p-n Diodes , 2014, IEEE Electron Device Letters.

[17]  R. V. Mickevicius,et al.  Design space and origin of off-state leakage in GaN vertical power diodes , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[18]  D. Bour,et al.  Vertical Power p-n Diodes Based on Bulk GaN , 2015, IEEE Transactions on Electron Devices.

[19]  Ronald J. Gutmann,et al.  Design considerations and experimental analysis for silicon carbide power rectifiers , 1999 .

[20]  Tomas Palacios,et al.  Threshold voltage control by gate oxide thickness in fluorinated GaN metal-oxide-semiconductor high-electron-mobility transistors , 2013 .

[21]  S. LeBoeuf,et al.  Growth and characterization of GaN PiN rectifiers on free-standing GaN , 2005 .

[22]  F. Gao,et al.  Electrothermal Simulation and Thermal Performance Study of GaN Vertical and Lateral Power Transistors , 2013, IEEE Transactions on Electron Devices.

[23]  A. Dadgar Sixteen years GaN on Si , 2015 .

[24]  Naoki Kobayashi,et al.  Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence , 2018 .

[25]  K. Lau,et al.  Breakdown Ruggedness of Quasi-Vertical GaN-Based p-i-n Diodes on Si Substrates , 2016, IEEE Electron Device Letters.

[26]  Koji Katayama,et al.  Extremely Low On-Resistance and High Breakdown Voltage Observed in Vertical GaN Schottky Barrier Diodes with High-Mobility Drift Layers on Low-Dislocation-Density GaN Substrates , 2010 .

[27]  Huili Grace Xing,et al.  Near unity ideality factor and Shockley-Read-Hall lifetime in GaN-on-GaN p-n diodes with avalanche breakdown , 2015 .

[28]  Yuhao Zhang,et al.  Origin and Control of OFF-State Leakage Current in GaNon-Si Vertical Diodes Citation , 2015 .