Darrieus vertical axis wind turbine: Basic research methods

Horizontal axis wind turbines (HAWTs) are the mainstream of wind power industry in the world; however, as turbines are becoming bigger, the maintenance of equipments grows more complex and costs much higher. Compared with HAWTs, Darrieus vertical axis wind turbines (VAWTs) have more technological advantages, providing an alternative for the wind power technology; hence Darrieus VAWTs are catching more eyes. Nevertheless, the majority of wind turbine design currently focuses on HAWTs, researches on Darrieus VAWTs have lagged significantly behind those on HAWTs, which have greatly hindered the development of VAWTs. Accordingly, this paper reviews the main basic research methods and their corresponding applications in Darrieus VAWTs, aiming to let more experts know the current research status and also provide some guidance for relevant researches.

[1]  F. Scarano,et al.  Visualization by PIV of dynamic stall on a vertical axis wind turbine , 2009 .

[2]  Jelena Svorcan,et al.  Aerodynamic design and analysis of a small-scale vertical axis wind turbine , 2013 .

[3]  S. Roh,et al.  Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine , 2013 .

[4]  I. Paraschivoiu Wind turbine design with emphasis on Darrieus concept [ressource électronique] / Ion Paraschivoiu , 2002 .

[5]  R. Templin Aerodynamic performance theory for the NRC vertical-axis wind turbine , 1974 .

[6]  Stefano Mauro,et al.  2D CFD Modeling of H-Darrieus Wind Turbines Using a Transition Turbulence Model , 2014 .

[7]  Noor A. Ahmed,et al.  Improving Safety and Performance of Small-Scale Vertical Axis Wind Turbines , 2012 .

[8]  Russell M. Cummings,et al.  Computational challenges in high angle of attack flow prediction , 2003 .

[9]  Samir Ziada,et al.  Measurement of high solidity vertical axis wind turbine aerodynamic loads under high vibration response conditions , 2012 .

[10]  Ning Qin,et al.  Wind tunnel and numerical study of a small vertical axis wind turbine , 2008 .

[11]  Giorgio Pavesi,et al.  Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up , 2013 .

[12]  Ernesto Benini,et al.  Optimization of a Darrieus vertical-axis wind turbine using blade element – momentum theory and evolutionary algorithm , 2013 .

[13]  J. H. Strickland,et al.  A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study , 1979 .

[14]  M. Gharib,et al.  Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector , 2013 .

[15]  R. J. Muraca,et al.  Theoretical performance of cross-wind axis turbines with results for a catenary vertical axis configuration , 1975 .

[16]  S. Tullis,et al.  Flow separation on a high Reynolds number, high solidity vertical axis wind turbine with straight and canted blades and canted blades with fences , 2012 .

[17]  Mazharul Islam,et al.  Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines , 2008 .

[18]  Yan Li,et al.  Numerical simulation on the aerodynamic effects of blade icing on small scale Straight-bladed VAWT , 2012 .

[19]  Maria Vahdati,et al.  Unsteady flow simulation of a vertical axis augmented wind turbine: A two-dimensional study , 2014 .

[20]  Minoo H. Patel,et al.  Gyroscopic effects on a large vertical axis wind turbine mounted on a floating structure , 2012 .

[21]  M. H. Mohamed,et al.  Performance investigation of H-rotor Darrieus turbine with new airfoil shapes , 2012 .

[22]  Lucas I. Lago,et al.  Analysing the suspension system of variable-geometry oval-trajectory (VGOT) Darrieus wind turbines , 2008 .

[23]  Ernesto Benini,et al.  Optimal spanwise chord and thickness distribution for a Troposkien Darrieus wind turbine , 2014 .

[24]  Wen Tong Chong,et al.  Performance Investigation and Optimization of a Vertical Axis Wind Turbine with the Omni-Direction-Guide-Vane☆ , 2013 .

[25]  D. Ragni,et al.  Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry , 2014 .

[26]  O. Holme A contribution to the aerodynamic theory of the vertical-axis wind turbine , 1977 .

[27]  C MandalA,et al.  The Effects of Dynamic Stall and Flow Curvature on the Aerodynamics of Darrieus Turbines Applying the Cascade Model. , 1994 .

[28]  F. Trivellato,et al.  On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis , 2014 .

[29]  Chao Li,et al.  2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow , 2013 .

[30]  Ernesto Benini,et al.  Proposal for an innovative chord distribution in the Troposkien vertical axis wind turbine concept , 2014 .

[31]  T. Maeda,et al.  A straight-bladed vertical axis wind turbine with a directed guide vane row — Effect of guide vane geometry on the performance — , 2009 .

[32]  Fernando L. Ponta,et al.  On the aerodynamics of variable-geometry oval-trajectory Darrieus wind turbines , 2007 .

[33]  Nasir Hayat,et al.  Vertical axis wind turbine – A review of various configurations and design techniques , 2012 .

[34]  Pourya Alamdari,et al.  Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines , 2013 .

[35]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[36]  Noor A. Ahmed,et al.  Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets , 2013 .

[37]  Alexandru Dumitrache,et al.  LOW-FREQUENCY NOISE PREDICTION OF VERTICAL AXIS WIND TURBINES , 2010 .

[38]  Shengyi Wang,et al.  Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils , 2010 .

[39]  Kamarul Baharin Tawi,et al.  COMPUTER SIMULATION STUDIES ON THE EFFECT OVERLAP RATIO FOR SAVONIUS TYPE VERTICAL AXIS MARINE CURRENT TURBINE , 2010 .

[40]  Robert Dominy,et al.  Unsteady Surface Pressures and Airload of a Pitching Airfoil , 2013 .

[41]  Damodar Maity,et al.  Simulation of Flow Around and Behind a Savonius Rotor , 2005 .

[42]  David Greenblatt,et al.  Vertical axis wind turbine performance enhancement using plasma actuators , 2012 .

[43]  Jang-Ho Lee,et al.  Study on the analysis method for the vertical-axis wind turbines having Darrieus blades , 2013 .

[44]  L. A. Danao,et al.  An Experimental Investigation into the Influence of Unsteady Wind on the Performance of a Vertical Axis Wind Turbine , 2013 .

[45]  M. H. Mohamed Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines , 2014 .

[46]  Chao Li,et al.  Large eddy simulation of wind loads on a long-span spatial lattice roof , 2010 .

[47]  Hui Hu,et al.  Computational Study of Unsteady Flows around Dragonfly and Smooth Airfoils at Low Reynolds Numbers , 2008 .

[48]  Anders Goude,et al.  Robust VAWT control system evaluation by coupled aerodynamic and electrical simulations , 2013 .

[49]  Ujjwal K. Saha,et al.  Review on the numerical investigations into the design and development of Savonius wind rotors , 2013 .

[50]  Atilla Incecik,et al.  Flow control for VATT by fixed and oscillating flap , 2013 .

[51]  Wei Liu,et al.  Performance effects of attachment on blade on a straight-bladed vertical axis wind turbine , 2010 .

[52]  Guillermo Rein,et al.  44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .

[53]  R. E. Wilson,et al.  Wind-turbine aerodynamics , 1980 .

[54]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[55]  Wen Tong Chong,et al.  The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane , 2013 .

[56]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[57]  Louis Angelo M. Danao,et al.  A numerical investigation into the influence of unsteady wind on the performance and aerodynamics of a vertical axis wind turbine , 2014 .

[58]  Anders Goude,et al.  Aerodynamic and electrical evaluation of a VAWT farm control system with passive rectifiers and mutual DC-bus , 2013 .

[59]  James H. Strickland A performance prediction model for the Darrieus turbine , 1977 .

[60]  Ernesto Benini,et al.  The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD , 2011 .

[61]  Nobuyuki Fujisawa,et al.  Observations of dynamic stall on Darrieus wind turbine blades , 2001 .

[62]  Derek B. Ingham,et al.  Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine , 2013 .

[63]  Fernando L. Ponta,et al.  A vortex model for Darrieus turbine using finite element techniques , 2001 .

[64]  Flavien Billard,et al.  Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at a range of tip-speed ratios , 2014 .

[65]  D. J. Sharpe,et al.  An extended multiple streamtube theory for vertical axis wind turbines , 1980 .

[66]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[67]  Ernesto Benini,et al.  Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation , 2013 .