High Power Optically Pumped Semiconductor Lasers for Sodium Guidestar Applications

Optically pumped semiconductor lasers (OPSLs) are shown to provide a much more compact and less expensive source for illumination of the sodium layer of the mesosphere for use as a sodium laser guidestar via single and two photon excitation schemes. This represents a revolution in laser guidestar technology as the cost, size, and power requirements for a laser guidestar system are shown to have been decreased by an order of magnitude with guidestar performance shown to be similar to previous sources. Sodium laser guidestar sources for broadband simultaneous illumination of multiple lines are developed and simulated. Simulations are then compared to actual returns for multi-line sodium laser guidestars. The simultaneous multi-line laser guidestar is shown to be superior to the single line laser guidestar for equal output powers both via modeling and via on sky returns performed at Starfire Optical Range (SOR) with a combination of a legacy narrowband laser guidestars and a broadband OPSL guidestar. The multi-line OPSL guidestars are shown to provide the first continuous wave source for use as a polychromatic laser guidestar (PLGS) to correct for tip and tilt aberrations. Different methods for utilization of the PLGS

[1]  Wilhelm Kaenders,et al.  RFA-based 589-nm guide star lasers for ESO VLT: a paradigm shift in performance, operational simplicity, reliability, and maintenance , 2012, Other Conferences.

[2]  Robert Q. Fugate,et al.  Studies of a mesospheric sodium guidestar pumped by continuous-wave sum-frequency mixing of two Nd:YAG laser lines in lithium triborate , 2006, SPIE Defense + Commercial Sensing.

[3]  Amnon Yariv,et al.  QUANTUM WELL LASERS , 1985 .

[4]  J. Plane A Reference Atmosphere for the Atomic Sodium Layer , 2022 .

[5]  J. Hopkins,et al.  High‐brightness long‐wavelength semiconductor disk lasers , 2008 .

[6]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[7]  Emmi Kantola,et al.  High-efficiency 20 W yellow VECSEL. , 2014, Optics express.

[8]  A Mens,et al.  Photometric observations of a polychromatic laser guide star. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  Si-Hyun Park,et al.  Microchip-Type InGaN Vertical External-Cavity Surface-Emitting Laser , 2006 .

[10]  Shawn Hackett,et al.  Development of vertical external cavity surface emitting lasers (VECSELs) for use as monochromatic and polychromatic sodium guidestars , 2016, Astronomical Telescopes + Instrumentation.

[11]  Vincent Fesquet,et al.  Concept for polychromatic laser guide stars: one-photon excitation of the 4P3/2 level of a sodium atom. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  J. Beckers ADAPTIVE OPTICS FOR ASTRONOMY: Principles, Performance, and Applications , 1993 .

[13]  T. Leinonen,et al.  High power (23W) vertical external cavity surface emitting laser emitting at 1180 nm , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[14]  Wuhu Feng,et al.  A global model of meteoric sodium , 2013 .

[15]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[16]  P W Milonni,et al.  Theory of mesospheric sodium fluorescence excited by pulse trains. , 1992, Applied optics.

[17]  J. Drummond,et al.  Sodium Guidestar Radiometry Results from the SOR's 50W Fasor , 2006 .

[18]  Andreas Stintz,et al.  High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure , 2011, LASE.

[19]  T. Jeys,et al.  Development Of Mesospheric Sodium Laser Beacon For Atmospheric Adaptive Optics , 1990, LEOS '90. Conference Proceedings IEEE Lasers and Electro-Optics Society 1990 Annual Meeting.

[20]  Ronald Holzlöhner,et al.  Laser Development for Sodium Laser Guide Stars at ESO , 2010 .

[21]  Martin Strassner,et al.  0.8W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm , 2004 .

[22]  Juan Chilla,et al.  Recent advances in optically pumped semiconductor lasers , 2007, SPIE LASE.

[23]  R. Paschotta Vertical-External-Cavity Surface-Emitting Lasers , 2008 .

[24]  M. Kuznetsov,et al.  High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams , 1997, IEEE Photonics Technology Letters.

[25]  W. Gawlik,et al.  Resonant nonlinear magneto-optical effects in atoms , 2002, physics/0203077.

[26]  Markus Pessa,et al.  High power CW red VECSEL with linearly polarized TEM00 output beam. , 2005, Optics express.

[27]  J. Plane A time-resolved model of the mesospheric Na layer: constraints on the meteor input function , 2004 .

[28]  James R. Morris,et al.  Efficient excitation of a mesospheric sodium laser guide star by intermediate-duration pulses , 1994 .

[29]  W. Demtröder Laser Spectroscopy: Basic Concepts and Instrumentation , 1996 .

[30]  B. H. McGuyer,et al.  Collision Kernels from Velocity-Selective Optical Pumping with Magnetic Depolarization , 2013, 1302.0060.

[31]  L. Coldren,et al.  Design of Fabry-Perot surface-emitting lasers with a periodic gain structure , 1989 .

[32]  Hans Zogg,et al.  Optically pumped 5 μm IV-VI VECSEL with Al-heat spreader , 2008 .

[33]  Ronald Holzlöhner,et al.  Simulations of pulsed sodium laser guide stars: an overview , 2012, Other Conferences.

[34]  O. Okhotnikov,et al.  High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm. , 2007, Optics express.

[35]  S. Chu,et al.  Optical molasses and multilevel atoms: theory , 1989 .

[36]  B. Welsh,et al.  Design and performance analysis of adaptive optical telescopes using lasing guide stars , 1990, Proc. IEEE.

[37]  Erling Riis,et al.  Narrow linewidth operation of a tunable optically pumped semiconductor laser. , 2004, Optics express.

[38]  Jean-Claude Diels,et al.  Feasibility study to create a polychromatic guidestar in atomic sodium , 2003 .

[39]  Céline d’Orgeville,et al.  From Dye Laser Factory to Portable Semiconductor Laser : Four Generations of Sodium Guide Star Lasers for Adaptive Optics in Astronomy and Space Situational Awareness , 2015 .

[40]  Peter Brick,et al.  8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm , 2003 .

[41]  Tip-tilt correction for astronomical telescopes using adaptive control , 1997, WESCON/97 Conference Proceedings.

[42]  A. Corney,et al.  Atomic and laser spectroscopy , 1977 .

[43]  Erling Riis,et al.  Novel Gain Medium Design for Short-Wavelength Vertical-External-Cavity Surface-Emitting Laser , 2007, IEEE Journal of Quantum Electronics.

[44]  F. Rinaldi,et al.  Efficient Gallium–Arsenide Disk Laser , 2007, IEEE Journal of Quantum Electronics.

[45]  Taek Kim,et al.  920-nm Vertical-External-Cavity Surface-Emitting Lasers With a Slope Efficiency of 58% at Room Temperature , 2007, IEEE Photonics Technology Letters.

[46]  Hans Zogg,et al.  Lead chalcogenide VECSEL on Si emitting at 5 μm , 2008 .

[47]  Robert Q. Fugate,et al.  The Sodium LGS Brightness Model over the SOR , 2007 .

[48]  R. Holzlohner,et al.  Optimization of cw sodium laser guide star efficiency , 2009, 0908.1527.

[49]  Lee C. Bradley,et al.  Pulse-train excitation of sodium for use as a synthetic beacon , 1992 .

[50]  Anthony E. Siegman,et al.  Defining, measuring, and optimizing laser beam quality , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[51]  Robert Q. Fugate,et al.  Analysis of measured photon returns from sodium beacons , 1998 .

[52]  Jack Drummond,et al.  Simulations of mesospheric sodium guidestar radiance , 2008, SPIE LASE.