Fokker-planck-kolmogorov Equations

* Stationary Fokker-Planck-Kolmogorov equations* Existence of solutions* Global properties of densities* Uniqueness problems* Associated semigroups* Parabolic Fokker-Planck-Kolmogorov equations* Global parabolic regularity and upper bounds* Parabolic Harnack inequalities and lower bounds* Uniquess of solutions to Fokker-Planck-Kolmogorov equations* The infinite-dimensional case* Bibliography* Subject index

[1]  R. Kozlov On symmetries of the Fokker–Planck equation , 2013 .

[2]  N. V. Krylov Parabolic and Elliptic Equations with VMO Coefficients , 2005 .

[3]  $L^P$-uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients , 2001 .

[4]  A Note on the Convergence of Integral Functionals of Diffusion Processes. An Application to Strong Convergence , 1993 .

[5]  Infinite-dimensional Dirichlet operators I: Essential selfadjointness and associated elliptic equations , 1993 .

[6]  E. Landis,et al.  Qualitative Theory of Second Order Linear Partial Differential Equations , 1991 .

[7]  Harold J. Kushner,et al.  Stability and existence of diffusions with discontinuous or rapidly growing drift terms , 1972 .

[8]  A. Lasota,et al.  Lower bound technique in the theory of a stochastic differential equation , 2006 .

[9]  V. Mandrekar,et al.  Ultimate boundedness and invariant measures of stochastic evolution equations , 1996 .

[10]  L. Lorenzi Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in R N , 2011 .

[11]  A. Lunardi On the Ornstein-Uhlenbeck operator in ² spaces with respect to invariant measures , 1997 .

[12]  New maximum principles for linear elliptic equations , 2006, math/0607240.

[13]  N. Krylov Introduction to the theory of diffusion processes , 1994 .

[14]  S. Kusuoka Hölder continuity and bounds for fundamental solutions to nondivergence form parabolic equations , 2013, 1310.4600.

[15]  P. Lions,et al.  Mean field games , 2007 .

[16]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[17]  G. M. Lieberman Intermediate Schauder theory for second order parabolic equations. IV. Time irregularity and regularity , 1992, Differential and Integral Equations.

[18]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .

[19]  Ruifeng Liu,et al.  Stochastic Semilinear Evolution Equations: Lyapunov Function, Stability, and Ultimate Boundedness☆ , 1997 .

[20]  The Vlasov kinetic equation, dynamics of continuum and turbulence , 2011 .

[21]  Terry Lyons A Simple Criterion for Transience of a Reversible Markov Chain , 1983 .

[22]  G. Leoni A First Course in Sobolev Spaces , 2009 .

[23]  V. Liskevich,et al.  Estimates of Integral Kernels for Semigroups Associated with Second-Order Elliptic Operators with Singular Coefficients , 2003 .

[24]  On the Uniqueness Problem for Dirichlet Operators , 1999 .

[25]  The Approximate Calculation of Invariant Measures of Diffusions Via finite Difference Approximations to Degenerate Elliptic Partial Differential Equations , 1975 .

[26]  A. Shirikyan,et al.  Stochastic Dissipative PDE's and Gibbs Measures , 2000 .

[27]  N. Krylov Some Properties of Traces for Stochastic and Deterministic Parabolic Weighted Sobolev Spaces , 2001 .

[28]  Daniel Liberzon,et al.  Nonlinear feedback systems perturbed by noise: steady-state probability distributions and optimal control , 2000, IEEE Trans. Autom. Control..

[29]  V. Kondratiev,et al.  Estimates of Heat Kernels for a Class of Second‐Order Elliptic Operators with Applications to Semi‐Linear Inequalities in Exterior Domains , 2004 .

[30]  G. Ritter,et al.  Lyapunov-type conditions for stationary distributions of diffusion processes on hilbert spaces , 1994 .

[31]  $ L^p $-uniqueness for Dirichlet operators with singular potentials , 2002 .

[32]  Dejun Luo Uniqueness of degenerate Fokker-Planck equations with weakly differentiable drift whose gradient is given by a singular integral , 2014 .

[33]  On the strong convergence, contiguity and entire separation of diffusion processes , 1994 .

[34]  F. Liese Hellinger integrals of diffusion processes , 1986 .

[35]  Tomasz Szarek,et al.  Markov operators with a unique invariant measure , 2002 .

[36]  Thomas Lorenz Radon measures solving the Cauchy problem of the nonlinear transport equation , 2007 .

[37]  Choon-Lin Ho,et al.  Similarity solutions of the Fokker–Planck equation with time-dependent coefficients , 2011, 1106.3034.

[38]  H. Kushner,et al.  Converse theorems for stochastic Liapunov functions. , 1967 .

[39]  V. Maz'ya,et al.  Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems , 2012 .

[40]  N. Krylov Parabolic and elliptic equations in ^{1,}_{} and ^{}_{} , 2008 .

[41]  Gunter Ritter,et al.  Stability of solution to semilinear stochastic evolution equations , 1999 .

[42]  M. Rockner,et al.  Strong uniqueness for certain infinite dimensional Dirichlet operators and applications to stochastic quantization , 1998, math/9801144.

[43]  Some boundedness properties of certain stationary diffusion semigroups , 1985 .

[44]  Uniqueness of Fokker-Planck equations for spin lattice systems (II): Non-compact case , 2014 .

[45]  W. Littman Generalized subharmonic functions : monotonic approximations and an improved maximum principle , 1963 .

[46]  Uniqueness of Fokker-Planck equations for spin lattice systems (I): compact case , 2013 .

[47]  L. D. Lemle $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators , 2008 .

[48]  An improved lyapunov-function approach to the behavior of diffusion processes in hilbert spaces , 1997 .

[49]  V. Liskevich,et al.  On the Lp-Theory of C0-Semigroups Associated with Second-Order Elliptic Operators, II , 2002 .

[50]  W. Littman A Strong Maximum Principle for Weakly L-Subharmonic Functions , 1959 .

[51]  Wei Liu,et al.  Harnack inequality and applications for stochastic evolution equations with monotone drifts , 2008, 0802.0289.

[52]  Jean B. Lasserre,et al.  Invariant probabilities for Markov chains on a metric space , 1997 .

[53]  J. Lasserre A Lyapunov Criterion for Invariant Probabilities with Geometric Tail , 1998, Probability in the Engineering and Informational Sciences.

[54]  M. M. Vas’kovskii,et al.  Existence of weak solutions of stochastic differential equations with discontinuous coefficients and with a partially degenerate diffusion operator , 2007 .

[55]  P. Lions,et al.  Existence and Uniqueness of Solutions to Fokker–Planck Type Equations with Irregular Coefficients , 2008 .

[56]  Yi Shen,et al.  Sufficient and necessary conditions on the existence of stationary distribution and extinction for stochastic generalized logistic system , 2015 .

[57]  N. Krylov Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation , 1976 .

[58]  G. Metafune,et al.  On the domains of elliptic operators in $L^1$ , 2004, Differential and Integral Equations.

[59]  Huijiang Zhao FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES WITH SINGULAR INITIAL DATA Lp(p , 1996 .

[60]  E. M. Landis,et al.  Second Order Equations of Elliptic and Parabolic Type , 1997 .

[61]  L. Lorenzi Nonautonomous Kolmogorov equations in the whole space: a survey on recent results , 2012, 1210.8392.

[62]  D. Pallara,et al.  Dirichlet boundary conditions for elliptic operators with unbounded drift , 2005 .

[63]  H. Künsch Time reversal and stationary Gibbs measures , 1984 .

[64]  H. Long,et al.  A NOTE ON THE ESSENTIAL SELF-ADJOINTNESS OF ORNSTEIN–UHLENBECK OPERATORS PERTURBED BY A DISSIPATIVE DRIFT AND A POTENTIAL , 2004 .

[65]  G. Toscani,et al.  Long-Time Asymptotics of Kinetic Models of Granular Flows , 2004 .

[66]  B. Zegarliński,et al.  Coercive inequalities for Hörmander type generators in infinite dimensions , 2007 .

[67]  V. Liskevich,et al.  Dirichlet operators: A priori estimates and the uniqueness problem , 1992 .

[68]  Existence and uniqueness of an invariant probability for a class of Feller Markov chains , 1996 .

[69]  Cores for parabolic operators with unbounded coefficients , 2009 .

[70]  Dejun Luo Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients , 2011, 1105.4672.

[71]  A. Kulik Asymptotic and spectral properties of exponentially ϕ-ergodic Markov processes , 2009, 0911.5473.

[72]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[73]  A. Lunardi,et al.  Elliptic operators with unbounded diffusion coefficients in L2 spaces with respect to invariant measures , 2006 .

[74]  Necessary and sufficient conditions for the symmetrizability of differential operators over infinite dimensional state spaces , 2000 .

[75]  M. Röckner,et al.  Uniqueness of diffusion generators for two types of particle systems with singular interactions , 2004 .

[76]  V. V. Kozlov,et al.  Обобщенное кинетическое уравнение Власова@@@The generalized Vlasov kinetic equation , 2008 .

[77]  R. Lang On the asymptotic behaviour of infinite gradient systems , 1979 .

[78]  Harold J. Kushner Asymptotic Distributions of Solutions of Ordinary Differential Equations with Wide Band Noise Inputs; Approximate Invariant Measures. , 1982 .

[79]  Perelmanʼs W-entropy for the Fokker–Planck equation over complete Riemannian manifolds , 2011 .

[80]  M. Kunze,et al.  NONAUTONOMOUS KOLMOGOROV PARABOLIC EQUATIONS WITH UNBOUNDED COEFFICIENTS , 2008, 0804.1430.

[81]  C. Lo Exactly solvable Fokker-Planck equation with time-dependent nonlinear drift and diffusion coefficients – the Lie-algebraic approach , 2011 .

[82]  DIRICHLET OPERATORS WITH VARIABLE COEFFICIENTS IN Lp-SPACES OF FUNCTIONS OF INFINITELY MANY VARIABLES COEFFICIENTS , 1999 .

[83]  N. Krylov,et al.  Lectures on Elliptic and Parabolic Equations in Holder Spaces , 1996 .

[84]  C. Villani,et al.  ON THE TREND TO EQUILIBRIUM FOR THE FOKKER-PLANCK EQUATION : AN INTERPLAY BETWEEN PHYSICS AND FUNCTIONAL ANALYSIS , 2004 .

[85]  H. Kushner The Cauchy problem for a class of degenerate parabolic equations and asymptotic properties of the related diffusion processes , 1969 .

[86]  M. Lavrentieff,et al.  Sur quelques problèmes du calcul des variations , 1927 .

[87]  Lyapunov Functions and Stationary Distributions of Stochastic Evolution Equations , 2003 .

[88]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[89]  H. Künsch,et al.  Non reversible stationary measures for infinite interacting particle systems , 1984 .

[90]  Thomas Lorenz,et al.  Mutational Analysis: A Joint Framework for Cauchy Problems in and Beyond Vector Spaces , 2010 .

[91]  N. Krylov,et al.  Second-order elliptic equations with variably partially VMO coefficients , 2008, 0807.0926.

[92]  M. Ledoux On an integral criterion for hypercontractivity of diffusion semigroups and extremal functions , 1992 .

[93]  E. Lanconelli Potential analysis for a class of diffusion equations: a Gaussian bounds approach , 2007 .

[94]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[95]  E. Lanconelli,et al.  GLOBAL L p ESTIMATES FOR DEGENERATE ORNSTEIN-UHLENBECK OPERATORS: A GENERAL APPROACH , 2011 .

[96]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[97]  Xiang-Dong Li Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds , 2005 .