Tunable nanophotonics enabled by chalcogenide phase-change materials

Abstract Nanophotonics has garnered intensive attention due to its unique capabilities in molding the flow of light in the subwavelength regime. Metasurfaces (MSs) and photonic integrated circuits (PICs) enable the realization of mass-producible, cost-effective, and efficient flat optical components for imaging, sensing, and communications. In order to enable nanophotonics with multipurpose functionalities, chalcogenide phase-change materials (PCMs) have been introduced as a promising platform for tunable and reconfigurable nanophotonic frameworks. Integration of non-volatile chalcogenide PCMs with unique properties such as drastic optical contrasts, fast switching speeds, and long-term stability grants substantial reconfiguration to the more conventional static nanophotonic platforms. In this review, we discuss state-of-the-art developments as well as emerging trends in tunable MSs and PICs using chalcogenide PCMs. We outline the unique material properties, structural transformation, and thermo-optic effects of well-established classes of chalcogenide PCMs. The emerging deep learning-based approaches for the optimization of reconfigurable MSs and the analysis of light-matter interactions are also discussed. The review is concluded by discussing existing challenges in the realization of adjustable nanophotonics and a perspective on the possible developments in this promising area.

[1]  Ali Adibi,et al.  Reconfigurable multifunctional metasurfaces employing hybrid phase-change plasmonic architecture , 2018, Nanophotonics.

[2]  Ramon Paniagua-Dominguez,et al.  Active and Tunable Nanophotonics With Dielectric Nanoantennas , 2020, Proceedings of the IEEE.

[3]  Zhitang Song,et al.  Y Doped Sb2Te3 Phase-Change Materials: Towards a Universal Memory. , 2020, ACS applied materials & interfaces.

[4]  Ravi S. Hegde,et al.  Deep learning: a new tool for photonic nanostructure design , 2020, Nanoscale advances.

[5]  Calum Williams,et al.  Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe , 2020, Optics express.

[6]  A. Majumdar,et al.  Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters. , 2020, ACS applied materials & interfaces.

[7]  Andrei Faraon,et al.  Multifunctional 25D metastructures enabled by adjoint optimization , 2020, Optica.

[8]  Zihao Xu,et al.  Transient Second-Order Nonlinear Media: Breaking the Spatial Symmetry in the Time Domain via Hot-Electron Transfer. , 2020, Physical review letters.

[9]  A. Krasnok,et al.  Active Nanophotonics , 2019, Proceedings of the IEEE.

[10]  J. Carolan,et al.  Hybrid integration methods for on-chip quantum photonics , 2019, Optica.

[11]  Reza Pourabolghasem,et al.  Knowledge Discovery in Nanophotonics Using Geometric Deep Learning , 2019, Adv. Intell. Syst..

[12]  Vladimir M. Shalaev,et al.  Rapid Classification of Quantum Sources Enabled by Machine Learning , 2019, Advanced Quantum Technologies.

[13]  Ali Adibi,et al.  Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures , 2019, npj Computational Materials.

[14]  Junsuk Rho,et al.  Design of high transmission color filters for solar cells directed by deep Q-learning , 2020 .

[15]  Ravi S. Hegde,et al.  Photonics Inverse Design: Pairing Deep Neural Networks With Evolutionary Algorithms , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Juntao Li,et al.  High-Q Quasibound States in the Continuum for Nonlinear Metasurfaces. , 2019, Physical review letters.

[17]  Stephen E. Borg,et al.  All-optical continuous tuning of phase-change plasmonic metasurfaces for multispectral thermal imaging , 2019, 1912.08086.

[18]  G. Zheng,et al.  Chromatic Dispersion Manipulation Based on Metalenses , 2019, Advanced materials.

[19]  Bowen Zheng,et al.  A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design , 2019, ACS Photonics.

[20]  Zongfu Yu,et al.  A Bidirectional Deep Neural Network for Accurate Silicon Color Design , 2019, Advanced materials.

[21]  Renhao Fan,et al.  Constructing Metastructures with Broadband Electromagnetic Functionality , 2019, Advanced materials.

[22]  Hua Cheng,et al.  Metasurface‐Empowered Optical Multiplexing and Multifunction , 2019, Advanced materials.

[23]  H. Altug,et al.  Metasurface-based molecular biosensing aided by artificial intelligence. , 2019, Angewandte Chemie.

[24]  S. Phinn,et al.  Australian vegetated coastal ecosystems as global hotspots for climate change mitigation , 2019, Nature Communications.

[25]  Jordan M. Malof,et al.  Deep learning for accelerated all-dielectric metasurface design. , 2019, Optics express.

[26]  C. Wright,et al.  Integrated phase-change photonic devices and systems , 2019, MRS Bulletin.

[27]  Byoungho Lee,et al.  Progresses in the practical metasurface for holography and lens , 2019, Nanophotonics.

[28]  C. Wright,et al.  Plasmonically-enhanced all-optical integrated phase-change memory. , 2019, Optics express.

[29]  Hualiang Zhang,et al.  Generative Multi-Functional Meta-Atom and Metasurface Design Networks , 2019, ArXiv.

[30]  Jason Hickey,et al.  Data-driven metasurface discovery , 2018, ACS nano.

[31]  T. Cao,et al.  Fundamentals and Applications of Chalcogenide Phase‐Change Material Photonics , 2019, Advanced Theory and Simulations.

[32]  Francesco Monticone,et al.  Anomalies in light scattering , 2019, Advances in Optics and Photonics.

[33]  A. Krasnok,et al.  Nonscattering-to-Superscattering Switch with Phase-Change Materials , 2019, ACS Photonics.

[34]  I. Staude,et al.  Light-emitting metasurfaces , 2019, Nanophotonics.

[35]  C. David Wright,et al.  A Nonvolatile Phase‐Change Metamaterial Color Display , 2019, Advanced Optical Materials.

[36]  F. Setzpfandt,et al.  Resonant dielectric metasurfaces: active tuning and nonlinear effects , 2019, Journal of Physics D: Applied Physics.

[37]  Lei Zhou,et al.  Tunable/Reconfigurable Metasurfaces: Physics and Applications , 2019, Research.

[38]  Zhaocheng Liu,et al.  Compounding Meta‐Atoms into Metamolecules with Hybrid Artificial Intelligence Techniques , 2019, Advanced materials.

[39]  Federico Capasso,et al.  Matrix Fourier optics enables a compact full-Stokes polarization camera , 2019, Science.

[40]  Ping Yang,et al.  Tunable Duplex Metalens Based on Phase-Change Materials in Communication Range , 2019, Nanomaterials.

[41]  Ali Adibi,et al.  Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach. , 2019, Nanoscale.

[42]  Ravi S. Hegde,et al.  Accelerating optics design optimizations with deep learning , 2019, Optical Engineering.

[43]  Linjie Zhou,et al.  Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material. , 2019, Science bulletin.

[44]  Pin Chieh Wu,et al.  Phase Modulation with Electrically Tunable Vanadium Dioxide Phase-Change Metasurfaces. , 2019, Nano letters.

[45]  M. Wuttig,et al.  Advanced Optical Programming of Individual Meta‐Atoms Beyond the Effective Medium Approach , 2019, Advanced materials.

[46]  Dimos Poulikakos,et al.  Optical Metasurfaces: Evolving from Passive to Adaptive , 2019, Advanced Optical Materials.

[47]  Vladimir M. Shalaev,et al.  Spatiotemporal light control with active metasurfaces , 2019, Science.

[48]  Jonathan A. Fan,et al.  Global optimization of dielectric metasurfaces using a physics-driven neural network , 2019, Nano letters.

[49]  Yang Long,et al.  Inverse design of photonic topological state via machine learning , 2019, Applied Physics Letters.

[50]  Linjie Zhou,et al.  Miniature Multilevel Optical Memristive Switch Using Phase Change Material , 2019, ACS Photonics.

[51]  Ali Adibi,et al.  Deep Learning Reveals Underlying Physics of Light–Matter Interactions in Nanophotonic Devices , 2019, Advanced Theory and Simulations.

[52]  Jing Kong,et al.  Reversible Switching of Optical Phase Change Materials Using Graphene Microheaters , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[53]  Matthias Wuttig,et al.  Polariton nanophotonics using phase-change materials , 2019, Nature Communications.

[54]  J. Feldmann,et al.  All-optical spiking neurosynaptic networks with self-learning capabilities , 2019, Nature.

[55]  Douglas H. Werner,et al.  Recent Progress in Active Optical Metasurfaces , 2019, Advanced Optical Materials.

[56]  Byoungho Lee,et al.  Metasurface with Nanostructured Ge2Sb2Te5 as a Platform for Broadband‐Operating Wavefront Switch , 2019, Advanced Optical Materials.

[57]  Yongfeng Li,et al.  Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design , 2019, Advanced science.

[58]  W. Cai,et al.  All-Optical Control of Light in Micro- and Nanophotonics , 2019, ACS Photonics.

[59]  Volkan Cevher,et al.  Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces , 2019, Nature Photonics.

[60]  Jonathan A. Fan,et al.  Review of numerical optimization techniques for meta-device design [Invited] , 2019, Optical Materials Express.

[61]  Ping Yang,et al.  Near-infrared tunable metalens based on phase change material Ge2Se2Te5 , 2019, Scientific Reports.

[62]  Ji Zhou,et al.  Highly Efficient Active All-Dielectric Metasurfaces Based on Hybrid Structures Integrated with Phase-Change Materials: From Terahertz to Optical Ranges. , 2019, ACS applied materials & interfaces.

[63]  Jianguo Tian,et al.  Empowered Layer Effects and Prominent Properties in Few‐Layer Metasurfaces , 2019, Advanced Optical Materials.

[64]  G. Coppola,et al.  Near-infrared modulation by means of GeTe/SOI-based metamaterial. , 2019, Optics letters.

[65]  A. Fratalocchi,et al.  Nonradiating photonics with resonant dielectric nanostructures , 2019, Nanophotonics.

[66]  Andrea Alù,et al.  Machine-learning reprogrammable metasurface imager , 2019, Nature Communications.

[67]  Sergey I. Bozhevolnyi,et al.  Dynamic Metasurfaces Using Phase‐Change Chalcogenides , 2019, Advanced Optical Materials.

[68]  S. Weiss,et al.  Optical phase change materials in integrated silicon photonic devices (Conference Presentation) , 2019, Smart Photonic and Optoelectronic Integrated Circuits XXI.

[69]  Y. Kivshar,et al.  All-Dielectric Resonant Meta-Optics Lightens up , 2019, ACS Photonics.

[70]  Hong‐Bo Sun,et al.  Tunable Metasurfaces Based on Active Materials , 2019, Advanced Functional Materials.

[71]  Willie J. Padilla,et al.  Dynamic bound states in the continuum , 2019, Optica.

[72]  Trevon Badloe,et al.  Optimisation of colour generation from dielectric nanostructures using reinforcement learning. , 2019, Optics express.

[73]  Pierre Berini,et al.  Plasmonic colours predicted by deep learning , 2019, Scientific Reports.

[74]  Jun B. Rho,et al.  Dual-Functional Nanoscale Devices Using Phase-Change Materials: A Reconfigurable Perfect Absorber with Nonvolatile Resistance-Change Memory Characteristics , 2019, Applied Sciences.

[75]  Seeram Ramakrishna,et al.  Wide-Gamut Plasmonic Color Palettes with Constant Subwavelength Resolution. , 2019, ACS nano.

[76]  Toshiaki Koike-Akino,et al.  Deep Neural Network Inverse Design of Integrated Photonic Power Splitters , 2019, Scientific Reports.

[77]  C. Wright,et al.  Tunable Volatility of Ge2Sb2Te5 in Integrated Photonics , 2019, Advanced Functional Materials.

[78]  Sergey I. Bozhevolnyi,et al.  Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5 , 2019, Nature Communications.

[79]  M. Miri,et al.  Exceptional points in optics and photonics , 2019, Science.

[80]  Mohsen Jafari,et al.  A Reconfigurable Color Reflector by Selective Phase Change of GeTe in a Multilayer Structure , 2019, Advanced Optical Materials.

[81]  Xuan Li,et al.  Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality , 2018, Science Advances.

[82]  Arka Majumdar,et al.  Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches , 2018, ACS Photonics.

[83]  Vladimir Liberman,et al.  Broadband transparent optical phase change materials for high-performance nonvolatile photonics , 2018, Nature Communications.

[84]  Yuebing Zheng,et al.  Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale , 2018, Nanophotonics.

[85]  Siegfried Janz,et al.  Mapping the global design space of nanophotonic components using machine learning pattern recognition , 2018, Nature Communications.

[86]  Andrea Alù,et al.  Nanophotonic engineering of far-field thermal emitters , 2018, Nature Materials.

[87]  C. David Wright,et al.  In-memory computing on a photonic platform , 2018, Science Advances.

[88]  Tutor,et al.  NOVEL PHOTONIC SWITCHING COMPONENTS WITH NON-VOLATILE RESPONSE FOR TELECOM APPLICATIONS , 2019 .

[89]  Wei Zhang,et al.  Designing crystallization in phase-change materials for universal memory and neuro-inspired computing , 2019, Nature Reviews Materials.

[90]  I. Takeuchi,et al.  Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material , 2019, ACS Photonics.

[91]  C. David Wright,et al.  Fast and reliable storage using a 5  bit, nonvolatile photonic memory cell , 2018, Optica.

[92]  Christopher C. Tison,et al.  Linear programmable nanophotonic processors , 2018, Optica.

[93]  Cheng-Wei Qiu,et al.  Noninterleaved Metasurface for (26-1) Spin- and Wavelength-Encoded Holograms. , 2018, Nano letters.

[94]  Kyunghee Choi,et al.  Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials. , 2018, Nanoscale.

[95]  Linjie Zhou,et al.  All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material. , 2018, Optics letters.

[96]  J. Rho,et al.  Recent Advances in Tunable and Reconfigurable Metamaterials , 2018, Micromachines.

[97]  C. David Wright,et al.  Reconfigurable Nanophotonic Cavities with Nonvolatile Response , 2018, ACS Photonics.

[98]  C David Wright,et al.  Reconfigurable phase-change meta-absorbers with on-demand quality factor control. , 2018, Optics express.

[99]  Michael Mrejen,et al.  Plasmonic nanostructure design and characterization via Deep Learning , 2018, Light: Science & Applications.

[100]  Y. Kivshar,et al.  Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. , 2018, Physical review letters.

[101]  Qiang Li,et al.  Reconfigurable all-dielectric antenna-based metasurface driven by multipolar resonances. , 2018, Optics express.

[102]  Igor Aharonovich,et al.  Optical metasurfaces: new generation building blocks for multi-functional optics , 2018, Light: Science & Applications.

[103]  M. Pu,et al.  Plasmonic Metasurfaces for Switchable Photonic Spin–Orbit Interactions Based on Phase Change Materials , 2018, Advancement of science.

[104]  Jitendra K. Behera,et al.  Inter-diffusion of plasmonic metals and phase change materials , 2018, Journal of Materials Science.

[105]  Jeremy N. Munday,et al.  Dynamic Optical Properties of Metal Hydrides , 2018, ACS Photonics.

[106]  K. V. Sreekanth,et al.  Wide Bandgap Phase Change Material Tuned Visible Photonics , 2018, Advanced Functional Materials.

[107]  Yuan Hsing Fu,et al.  Directional lasing in resonant semiconductor nanoantenna arrays , 2018, Nature Nanotechnology.

[108]  Ali Adibi,et al.  Ultrafast Control of Phase and Polarization of Light Expedited by Hot-Electron Transfer. , 2018, Nano letters.

[109]  C. David Wright,et al.  Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited] , 2018, Optical Materials Express.

[110]  Kevin J. Miller,et al.  Optical phase change materials in integrated silicon photonic devices: review , 2018, Optical Materials Express.

[111]  Lei Zhou,et al.  High‐Efficiency Metasurfaces: Principles, Realizations, and Applications , 2018, Advanced Optical Materials.

[112]  Ivana Gasulla,et al.  Programmable multifunctional integrated nanophotonics , 2018, Nanophotonics.

[113]  Tatiana Habruseva,et al.  Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector , 2018, Light: Science & Applications.

[114]  M. Qiu,et al.  Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge2Sb2Te5 , 2018, Optical Materials Express.

[115]  Sandeep Inampudi,et al.  Adaptive Genetic Algorithm for Optical Metasurfaces Design , 2018, Scientific Reports.

[116]  Theresa S. Mayer,et al.  Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material , 2018, Optical Materials Express.

[117]  Din Ping Tsai,et al.  Metalenses: Advances and Applications , 2018, Advanced Optical Materials.

[118]  Nian‐Hai Shen,et al.  Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials. , 2018, Nanoscale.

[119]  Yi Ren,et al.  Toward non-volatile photonic memory: concept, material and design , 2018 .

[120]  Yimei Qiu,et al.  Tunable Mid‐Infrared Phase‐Change Metasurface , 2018 .

[121]  Qian Wang,et al.  Tunable and reconfigurable metasurfaces and metadevices , 2018 .

[122]  Sergey I. Bozhevolnyi,et al.  A review of gap-surface plasmon metasurfaces: fundamentals and applications , 2018, Nanophotonics.

[123]  Shuqi Chen,et al.  Geometric Metasurfaces for Ultrathin Optical Devices , 2018, Advanced Optical Materials.

[124]  Qiang Li,et al.  Thermal camouflage based on the phase-changing material GST , 2018, Light: Science & Applications.

[125]  H. Mosallaei,et al.  Dynamic beam control via Mie-resonance based phase-change metasurface: a theoretical investigation. , 2018, Optics express.

[126]  Nathan Youngblood,et al.  Device‐Level Photonic Memories and Logic Applications Using Phase‐Change Materials , 2018, Advanced materials.

[127]  Manuel Le Gallo,et al.  Monatomic phase change memory , 2018, Nature Materials.

[128]  Wei Zhang,et al.  Single-element glass to record data , 2018, Nature Materials.

[129]  Li Lu,et al.  Tuneable Thermal Emission Using Chalcogenide Metasurface , 2018, Advanced Optical Materials.

[130]  C. Min,et al.  Switching photonic nanostructures between cloaking and superscattering regimes using phase-change materials [Invited] , 2018 .

[131]  E. Pop,et al.  GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform , 2018 .

[132]  Yongmin Liu,et al.  Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials. , 2018, ACS nano.

[133]  Nikolay I. Zheludev,et al.  Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces , 2018, NPG Asia Materials.

[134]  Kyu-Tae Lee,et al.  A Generative Model for Inverse Design of Metamaterials , 2018, Nano letters.

[135]  Din Ping Tsai,et al.  Advances in optical metasurfaces: fabrication and applications [Invited]. , 2018, Optics express.

[136]  Ali Adibi,et al.  Dynamic Dielectric Metasurfaces Incorporating Phase-Change Material , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[137]  Andrei Faraon,et al.  A review of dielectric optical metasurfaces for wavefront control , 2018, Nanophotonics.

[138]  Rajeev J Ram,et al.  Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip , 2018, Nature.

[139]  Xian-shu Luo Subwavelength Optical Engineering with Metasurface Waves , 2018 .

[140]  H. Atwater,et al.  Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability. , 2018, Nano letters.

[141]  Minghui Jiang,et al.  Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2Te5 thin films , 2018, Scientific Reports.

[142]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[143]  Andrei Faraon,et al.  Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces , 2018, ACS Photonics.

[144]  Qiang Li,et al.  Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. , 2018, Nanoscale.

[145]  A. Alú,et al.  Trapping Light in Plain Sight: Embedded Photonic Eigenstates in Zero‐Index Metamaterials , 2018, 1802.01466.

[146]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[147]  J. Tiihonen,et al.  Amygdala-orbitofrontal structural and functional connectivity in females with anxiety disorders, with and without a history of conduct disorder , 2018, Scientific Reports.

[148]  P. Belov,et al.  Hybrid nanophotonics , 2018, Physics-Uspekhi.

[149]  C. David Wright,et al.  Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared , 2018 .

[150]  Fei Ding,et al.  Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence , 2017, Light: Science & Applications.

[151]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[152]  Byoungho Lee,et al.  Complete amplitude and phase control of light using broadband holographic metasurfaces. , 2017, Nanoscale.

[153]  Fei Ding,et al.  Gradient metasurfaces: a review of fundamentals and applications , 2017, Reports on progress in physics. Physical Society.

[154]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[155]  W. Cai,et al.  A Generative Model for Inverse Design of Metamaterials , 2018, Nano letters.

[156]  In,et al.  Switching photonic nanostructures between cloaking and superscattering regimes using phase-change materials [Invited] , 2018 .

[157]  R. Soref,et al.  Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. , 2018, Optics letters.

[158]  J Feldmann,et al.  Calculating with light using a chip-scale all-optical abacus , 2017, Nature Communications.

[159]  Xiaodong Yang,et al.  Metasurface Holograms for Holographic Imaging , 2017 .

[160]  C. Min,et al.  Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials. , 2017, Optics express.

[161]  Nicolas Bonod,et al.  Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures , 2017, 1710.10233.

[162]  J. Tominaga,et al.  Laser switching and characterisation of chalcogenides: systems, measurements, and applicability to photonics [Invited] , 2017 .

[163]  Ke Li,et al.  Multipurpose silicon photonics signal processor core , 2017, Nature Communications.

[164]  Harish Bhaskaran,et al.  On-chip photonic synapse , 2017, Science Advances.

[165]  Junsuk Rho,et al.  Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices , 2017, Materials.

[166]  M. Qiu,et al.  Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase‐Changing Material GST , 2017 .

[167]  P. Prucnal,et al.  Neuromorphic photonic networks using silicon photonic weight banks , 2017, Scientific Reports.

[168]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[169]  A. Roberts,et al.  Dark mode metasurfaces: sensing optical phase difference with subradiant modes and Fano resonances , 2017 .

[170]  Hitoshi Kawashima,et al.  Current-driven phase-change optical gate switch using indium–tin-oxide heater , 2017 .

[171]  Alexander Krasnok,et al.  Nonlinear metasurfaces: a paradigm shift in nonlinear optics , 2017 .

[172]  T. Zentgraf,et al.  Beam switching and bifocal zoom lensing using active plasmonic metasurfaces , 2017, Light: Science & Applications.

[173]  J. Teng,et al.  Reconfigurable phase-change photomask for grayscale photolithography , 2017 .

[174]  Qiang Li,et al.  Control over emissivity of zero-static-power thermal emitters based on phase changing material GST , 2017, CLEO 2017.

[175]  A. Alú,et al.  Metagratings: Beyond the Limits of Graded Metasurfaces for Wave Front Control. , 2017, Physical review letters.

[176]  I. Staude,et al.  Metamaterial-inspired silicon nanophotonics , 2017, Nature Photonics.

[177]  P. Belov,et al.  Resonant Nonplasmonic Nanoparticles for Efficient Temperature-Feedback Optical Heating. , 2017, Nano letters.

[178]  Ata Chizari,et al.  Dielectric metasurfaces solve differential and integro-differential equations. , 2017, Optics letters.

[179]  Igor Aharonovich,et al.  Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays. , 2017, Nano letters.

[180]  Yuri S. Kivshar,et al.  Electrically tunable all-dielectric optical metasurfaces based on liquid crystals , 2017 .

[181]  Jingsong Wei,et al.  Grayscale image recording on Ge2Sb2Te5 thin films through laser-induced structural evolution , 2017, Scientific Reports.

[182]  Wei Ting Chen,et al.  Achromatic metalens over 60 nm bandwidth in the visible , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[183]  B. Chichkov,et al.  All-dielectric nanophotonics: the quest for better materials and fabrication techniques , 2017, 1702.00677.

[184]  Juan C. Garcia,et al.  Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. , 2017, Nano letters.

[185]  Chi-Sun Hwang,et al.  Holographic image generation with a thin-film resonance caused by chalcogenide phase-change material , 2017, Scientific Reports.

[186]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[187]  Alessandro Busacca,et al.  Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits. , 2017, Nano letters.

[188]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[189]  M. Qiu,et al.  Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST , 2016, Light: Science & Applications.

[190]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[191]  C. Wright,et al.  Nonvolatile All‐Optical 1 × 2 Switch for Chipscale Photonic Networks , 2017 .

[192]  Clayton,et al.  Dynamic nanophotonics [Invited] , 2017 .

[193]  C. Sibilia,et al.  All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials. , 2016, Optics express.

[194]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[195]  Bhavin J. Shastri,et al.  Neuromorphic photonic networks using silicon photonic weight banks , 2016, Scientific Reports.

[196]  Din Ping Tsai,et al.  Active dielectric metasurface based on phase‐change medium , 2016 .

[197]  S. Tretyakov,et al.  Phase-change material-based nanoantennas with tunable radiation patterns. , 2016, Optics letters.

[198]  Pavel A. Belov,et al.  Nonlinear Transient Dynamics of Photoexcited Resonant Silicon Nanostructures , 2016 .

[199]  Marin Soljacic,et al.  Bound states in the continuum , 2016 .

[200]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[201]  Sijung Yoo,et al.  Multicolor Changeable Optical Coating by Adopting Multiple Layers of Ultrathin Phase Change Material Film , 2016 .

[202]  Hasan Hayat,et al.  Design of practicable phase-change metadevices for near-infrared absorber and modulator applications. , 2016, Optics express.

[203]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[204]  Harish Bhaskaran,et al.  Color Depth Modulation and Resolution in Phase‐Change Material Nanodisplays , 2016, Advanced materials.

[205]  Ata Chizari,et al.  Analog optical computing based on a dielectric meta-reflect array. , 2016, Optics letters.

[206]  S. Tcvetkova,et al.  Perfect control of reflection and refraction using spatially dispersive metasurfaces , 2016, 1605.02044.

[207]  Linjie Zhou,et al.  16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. , 2016, Optics express.

[208]  W. Pernice,et al.  Thermo-optical Effect in Phase-Change Nanophotonics , 2016 .

[209]  Seyedeh Mahsa Kamali,et al.  Highly tunable elastic dielectric metasurface lenses , 2016, 1604.03597.

[210]  Nikolay I. Zheludev,et al.  All-dielectric phase-change reconfigurable metasurface , 2016, 1604.01330.

[211]  M. Rais-Zadeh,et al.  Zero-static-power phase-change optical modulator. , 2016, Optics letters.

[212]  Ming Li,et al.  A fully reconfigurable photonic integrated signal processor , 2016, Nature Photonics.

[213]  Sailing He,et al.  Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. , 2016, Optics letters.

[214]  Seyedeh Mahsa Kamali,et al.  Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules , 2016, 1601.05847.

[215]  P. Belov,et al.  Fabrication of Hybrid Nanostructures via Nanoscale Laser‐Induced Reshaping for Advanced Light Manipulation , 2016, Advanced materials.

[216]  Valerio Pruneri,et al.  Ultrafast and Broadband Tuning of Resonant Optical Nanostructures Using Phase‐Change Materials , 2015, 1506.03739.

[217]  Ivana Gasulla,et al.  Microwave photonics: The programmable processor , 2016 .

[218]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[219]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[220]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[221]  A. Mikhailovsky,et al.  Widely Tunable Infrared Antennas Using Free Carrier Refraction. , 2015, Nano letters.

[222]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[223]  Abdelaziz Boulesbaa,et al.  Nonlinear Fano-Resonant Dielectric Metasurfaces. , 2015, Nano letters.

[224]  Wim Bogaerts,et al.  Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited] , 2015 .

[225]  Duk-Yong Choi,et al.  Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures. , 2015, Nano letters.

[226]  Zahra Kavehvash,et al.  Analog Computing Using Graphene-based Metalines , 2015, Optics letters.

[227]  P. Belov,et al.  Tuning of Magnetic Optical Response in a Dielectric Nanoparticle by Ultrafast Photoexcitation of Dense Electron-Hole Plasma. , 2015, Nano letters.

[228]  Richard F. Haglund,et al.  Optically Monitored Electrical Switching in VO2 , 2015 .

[229]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[230]  M. Wuttig,et al.  A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability , 2015, Advanced materials.

[231]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[232]  K. Bergman,et al.  On-chip mode-division multiplexing switch , 2015 .

[233]  Thomas Taubner,et al.  Active Chiral Plasmonics. , 2015, Nano letters.

[234]  Chris G. H. Roeloffzen,et al.  Programmable photonic signal processor chip for radiofrequency applications , 2015, 1505.00094.

[235]  Minghui Hong,et al.  Engineering the Phase Front of Light with Phase-Change Material Based Planar lenses , 2015, Scientific Reports.

[236]  Aaron M. Lindenberg,et al.  Color Switching with Enhanced Optical Contrast in Ultrathin Phase-Change Materials and Semiconductors Induced by Femtosecond Laser Pulses , 2015 .

[237]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[238]  A. Alú,et al.  Recent advances on optical metasurfaces , 2014 .

[239]  Thomas Taubner,et al.  Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses , 2014 .

[240]  A. Rickman The commercialization of silicon photonics , 2014, Nature Photonics.

[241]  X. Tao,et al.  Fiber‐Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications , 2014, Advanced materials.

[242]  Eric Pop,et al.  Phase change materials and phase change memory , 2014 .

[243]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[244]  Andrea Alù,et al.  Embedded photonic eigenvalues in 3D nanostructures , 2014 .

[245]  Nikolay I. Zheludev,et al.  1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage , 2014 .

[246]  M. Cryan,et al.  Fast Tuning of Double Fano Resonance Using A Phase-Change Metamaterial Under Low Power Intensity , 2014, Scientific Reports.

[247]  C. David Wright,et al.  On‐Chip Photonic Memory Elements Employing Phase‐Change Materials , 2014, Advanced materials.

[248]  Seokho Yun,et al.  Near-ideal optical metamaterial absorbers with super-octave bandwidth. , 2014, ACS nano.

[249]  Lei Zhang,et al.  Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies , 2014, Scientific Reports.

[250]  Lei Zhang,et al.  Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. , 2013, Optics express.

[251]  V. Pruneri,et al.  Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials , 2013 .

[252]  Shimeng Yu,et al.  Synaptic electronics: materials, devices and applications , 2013, Nanotechnology.

[253]  I. Brener,et al.  Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. , 2013, ACS nano.

[254]  Lei Zhang,et al.  Rapid phase transition of a phase-change metamaterial perfect absorber , 2013 .

[255]  Thomas Taubner,et al.  Using low-loss phase-change materials for mid-infrared antenna resonance tuning. , 2013, Nano letters.

[256]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[257]  S. Maier,et al.  Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. , 2013, Optics express.

[258]  Lei Zhang,et al.  Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial , 2013 .

[259]  M. Meilă,et al.  Non-linear dimensionality reduction: Riemannian metric estimation and the problem of geometric discovery , 2013, 1305.7255.

[260]  Wei Shi,et al.  Silicon photonic micro-disk resonators for label-free biosensing. , 2013, Optics express.

[261]  Ashok V. Krishnamoorthy,et al.  High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. , 2012, Optics express.

[262]  Harish Bhaskaran,et al.  Photonic non-volatile memories using phase change materials , 2012 .

[263]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[264]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[265]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[266]  Hitoshi Kawashima,et al.  Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide. , 2012, Optics express.

[267]  Yurii A. Vlasov,et al.  Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G , 2012, IEEE Communications Magazine.

[268]  P. Dumon,et al.  Silicon microring resonators , 2012 .

[269]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[270]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[271]  Xuezhe Zheng,et al.  Submilliwatt, ultrafast and broadband electro-optic silicon switches. , 2010, Optics express.

[272]  Hitoshi Kawashima,et al.  Reversible optical gate switching in Si wire waveguide integrated with Ge 2 Sb 2 Te 5 thin film , 2010 .

[273]  N. Zheludev,et al.  Metamaterial electro-optic switch of nanoscale thickness , 2010 .

[274]  Hitoshi Kawashima,et al.  Small-sized optical gate switch using Ge 2 Sb 2 Te 5 phase-change material integrated with silicon waveguide , 2010 .

[275]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[276]  N. Zheludev,et al.  Phase-change chalcogenide glass metamaterial , 2009, 0912.4288.

[277]  J. Přikryl,et al.  Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study , 2009 .

[278]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[279]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[280]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[281]  Hiroyuki Tsuda,et al.  Proposal of a small self-holding 2×2 optical switch using phase-change material , 2008, IEICE Electron. Express.

[282]  A. Borisov,et al.  Bound States in the continuum in photonics. , 2008, Physical review letters.

[283]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[284]  Matthias Wuttig,et al.  Origin of the optical contrast in phase-change materials. , 2007, Physical review letters.

[285]  Omri Raday,et al.  Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector , 2007, SPIE Optics East.

[286]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[287]  Stefan Blügel,et al.  Unravelling the interplay of local structure and physical properties in phase-change materials , 2006 .

[288]  Erwin R. Meinders,et al.  Optical data storage : phase-change media and recording , 2006 .

[289]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[290]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[291]  Matthias Wuttig,et al.  Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording , 2005 .

[292]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[293]  Matthias Wuttig,et al.  Towards a universal memory? , 2005, Nature materials.

[294]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[295]  M. Wuttig,et al.  The Dependence of Crystal Structure of Te‐Based Phase‐Change Materials on the Number of Valence Electrons , 2004 .

[296]  A. Pirovano,et al.  Crystallization and phase separation in Ge2+xSb2Te5 thin films , 2003 .

[297]  Steven G. Johnson,et al.  Perturbation theory for Maxwell's equations with shifting material boundaries. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[298]  Kenji Narumi,et al.  Phase-change material for use in rewritable dual-layer optical disk , 2002, Optical Data Storage.

[299]  Matthias Wuttig,et al.  Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .

[300]  V. Weidenhof,et al.  Morphology and structure of laser-modified Ge2Sb2Te5 films studied by transmission electron microscopy , 2001 .

[301]  Noboru Yamada,et al.  Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory , 2000 .

[302]  Yuji Mori,et al.  Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase , 2000 .

[303]  V. Weidenhof,et al.  Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements , 2000 .

[304]  Gunnar Rätsch,et al.  Kernel PCA and De-Noising in Feature Spaces , 1998, NIPS.

[305]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[306]  J. H. Coombs,et al.  Laser‐induced crystallization phenomena in GeTe‐based alloys. I. Characterization of nucleation and growth , 1995 .

[307]  A. J. Snell,et al.  Metal-semiconductor transition in electroformed chromium/amorphous silicon/vanadium thin-film structures , 1994 .

[308]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[309]  Kenichi Nishiuchi,et al.  High Speed Overwritable Phase Change Optical Disk Material , 1987 .

[310]  M. Chen,et al.  Compound materials for reversible, phase‐change optical data storage , 1986 .

[311]  Frank H. Stillinger,et al.  Bound states in the continuum , 1975 .

[312]  J. A. Aseltine,et al.  The application of amorphous materials to computer memories , 1973 .

[313]  A. Owen,et al.  Electronic conduction and switching in chalcogenide glasses , 1973 .

[314]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[315]  F. Argall Switching phenomena in titanium oxide thin films , 1968 .