The Fisher-Hartwig Formula and Entanglement Entropy
暂无分享,去创建一个
[1] A. Martin-Löf,et al. Dynamics of a Local Perturbation in the X-Y Model II—Excitations† , 1972 .
[2] Eytan Barouch,et al. Statistical Mechanics of the X Y Model. II. Spin-Correlation Functions , 1971 .
[3] Its,et al. Temperature correlations of quantum spins. , 1992, Physical review letters.
[4] Bernd Silbermann,et al. Analysis of Toeplitz Operators , 1991 .
[5] J Eisert,et al. Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2005, Physical review letters.
[6] Quantum entanglement and the self-trapping transition in polaronic systems , 2004, quant-ph/0407080.
[7] C. D. Levermore,et al. Singular limits of dispersive waves , 1994 .
[8] M. Jimbo,et al. Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .
[9] J. Baik,et al. On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.
[10] Craig A. Tracy,et al. Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .
[11] J. Latorre,et al. Entanglement entropy in the Lipkin-Meshkov-Glick model (4 pages) , 2004, cond-mat/0409611.
[12] E. B. Saff,et al. Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle , 2006 .
[13] T. Ehrhardt. A Status Report on the Asymptotic Behavior of Toeplitz Determinants with Fisher-Hartwig Singularities , 2001 .
[14] Vladimir E. Korepin,et al. Quantum Spin Chain, Toeplitz Determinants and the Fisher—Hartwig Conjecture , 2004 .
[15] J I Cirac,et al. Diverging entanglement length in gapped quantum spin systems. , 2004, Physical review letters.
[16] A. S. Fokas,et al. The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .
[17] E. Basor,et al. Asymptotics of Block Toeplitz Determinants and the Classical Dimer Model , 2006, math-ph/0607065.
[18] Athanassios S. Fokas,et al. The isomonodromy approach to matric models in 2D quantum gravity , 1992 .
[19] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[20] F. Franchini,et al. Renyi entropy of the XY spin chain , 2007, 0707.2534.
[21] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[22] S. Bose,et al. Natural thermal and magnetic entanglement in the 1D Heisenberg model. , 2000, Physical review letters.
[23] David P. DiVincenzo,et al. Quantum information and computation , 2000, Nature.
[24] J. Latorre,et al. Universality of entanglement and quantum-computation complexity , 2003, quant-ph/0311017.
[25] M. Y. Mo,et al. Entanglement Entropy in Quantum Spin Chains with Finite Range Interaction , 2007, 0708.0161.
[26] M. Rasetti,et al. Spin network quantum simulator , 2002, quant-ph/0209016.
[27] Eytan Barouch,et al. Statistical Mechanics of the XY Model. III , 1970 .
[28] B. Silbermann,et al. Toeplitz Determinants with One Fisher–Hartwig Singularity , 1997 .
[29] Alfréd Rényi,et al. Probability Theory , 1970 .
[30] Eytan Barouch,et al. Thermalization of a Magnetic Impurity in the Isotropic XY Model , 1970 .
[31] Alexander Its,et al. A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics , 1997 .
[32] E. Schrödinger. Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.
[33] Paolo Zanardi,et al. Holonomic quantum computation , 1999 .
[34] P. Dirac. Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.
[35] Entropy of XY Spin Chain and Block Toeplitz Determinants , 2006, quant-ph/0606178.
[36] V. Korepin,et al. Universality of entropy scaling in one dimensional gapless models. , 2003, Physical Review Letters.
[37] V. S. Kapitonov,et al. Time-Dependent Correlators of Local Spins of the One-Dimensional XY Heisenberg Chain , 2003 .
[38] Ira M. Gessel,et al. Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.
[39] Vladimir E. Korepin,et al. Differential Equations for Quantum Correlation Functions , 1990 .
[40] A. Lenard. Momentum Distribution in the Ground State of the One-Dimensional System of Impenetrable Bosons , 1964 .
[41] Gap probability in the spectrum of random matrices and asymptotics of polynomials orthogonal on an arc of the unit circle , 2004, math/0401258.
[42] Integrable Fredholm Operators and Dual Isomonodromic Deformations , 1997, solv-int/9706002.
[43] V. Korepin,et al. Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.
[44] V. Korepin,et al. Entanglement in the XY spin chain , 2004 .
[45] S Lloyd,et al. A Potentially Realizable Quantum Computer , 1993, Science.
[46] Stephanos Venakides,et al. Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .
[47] E. Lieb,et al. Two Soluble Models of an Antiferromagnetic Chain , 1961 .
[48] Asymptotics for Toeplitz determinants on a circular arc , 2004, math/0401256.
[49] A. Böttcher,et al. Notes on the asymptotic behavior of block TOEPLITZ matrices and determinants , 1980 .
[50] Hai-Qing Lin,et al. Entanglement of the Heisenberg chain with the next-nearest-neighbor interaction , 2004, quant-ph/0403026.
[51] T. Wu,et al. Theory of Toeplitz Determinants and the Spin Correlations of the Two-Dimensional Ising Model. III , 1967 .
[52] Martin B Plenio,et al. Three-spin interactions in optical lattices and criticality in cluster Hamiltonians. , 2004, Physical review letters.
[53] V. Roychowdhury,et al. Entanglement in a valence-bond solid state. , 2004, Physical review letters.
[54] Ingo Peschel. On the entanglement entropy for an XY spin chain , 2004 .
[55] C. Tracy,et al. The Fisher-Hartwig conjecture and generalizations☆ , 1991 .
[56] Estelle L. Basor,et al. Asymptotic formulas for Toeplitz determinants , 1978 .
[57] Emptiness Formation Probability for the One-Dimensional Isotropic XY Model , 2001, cond-mat/0106062.
[58] A. Böttcher,et al. Toeplitz matrices and determinants with Fisher-Hartwig symbols , 1985 .
[59] Michael E. Fisher,et al. Toeplitz Determinants: Some Applications, Theorems, and Conjectures , 2007 .
[60] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[61] B. McCoy. The connection between statistical mechanics and quantum field theory , 1994, hep-th/9403084.
[62] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .
[63] Charles H. Bennett,et al. Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[64] G. Vidal,et al. Entanglement in quantum critical phenomena. , 2002, Physical review letters.
[65] Shi-Jian Gu,et al. Entanglement, quantum phase transition, and scaling in the XXZ chain , 2003 .
[66] A. Osterloh,et al. Scaling of entanglement close to a quantum phase transition , 2002, Nature.
[67] E. Saff,et al. Szego Orthogonal Polynomials with Respect to an Analytic Weight: Canonical Representation and Strong Asymptotics , 2005, math/0502300.
[68] M. Nielsen,et al. Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.
[69] José Ignacio Latorre,et al. Ground state entanglement in quantum spin chains , 2004, Quantum Inf. Comput..
[70] On the Determinant Formulas by Borodin, Okounkov, Baik, Deift and Rains , 2001, math/0101008.
[71] F. Mezzadri,et al. Random Matrix Theory and Entanglement in Quantum Spin Chains , 2004, quant-ph/0407047.
[72] J. Cardy,et al. Entanglement entropy and quantum field theory , 2004, hep-th/0405152.
[73] P. Deift,et al. Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities , 2009, 0905.0443.
[74] P. Zanardi,et al. Entanglement and Quantum Phase Transition in Low Dimensional Spin Systems , 2004, quant-ph/0407228.
[75] A. Lenard. Some remarks on large Toeplitz determinants , 1972 .
[76] H. Widom. The Strong Szego Limit Theorem for Circular Arcs , 1971 .
[77] Eytan Barouch,et al. Dynamics of a Local Perturbation in the XY Model. I—Approach to Equilibrium , 1971 .
[78] H. Widom. On the limit of block Toeplitz determinants , 1975 .
[79] Emptiness formation probability for the anisotropic XY spin chain in a magnetic field , 2003, cond-mat/0307001.
[80] H. Widom. Asymptotic behavior of block Toeplitz matrices and determinants. II , 1974 .
[81] H. Widom. Toeplitz Determinants with Singular Generating Functions , 1973 .