The Fisher-Hartwig Formula and Entanglement Entropy

Toeplitz matrices have applications to different problems of statistical mechanics. Recently it was used for calculation of entanglement entropy in spin chains. In the paper we review these recent developments. We use the Fisher-Hartwig formula, as well as the recent results concerning the asymptotics of the block Toeplitz determinants, to calculate entanglement entropy of large block of spins in the ground state of XY spin chain.

[1]  A. Martin-Löf,et al.  Dynamics of a Local Perturbation in the X-Y Model II—Excitations† , 1972 .

[2]  Eytan Barouch,et al.  Statistical Mechanics of the X Y Model. II. Spin-Correlation Functions , 1971 .

[3]  Its,et al.  Temperature correlations of quantum spins. , 1992, Physical review letters.

[4]  Bernd Silbermann,et al.  Analysis of Toeplitz Operators , 1991 .

[5]  J Eisert,et al.  Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2005, Physical review letters.

[6]  Quantum entanglement and the self-trapping transition in polaronic systems , 2004, quant-ph/0407080.

[7]  C. D. Levermore,et al.  Singular limits of dispersive waves , 1994 .

[8]  M. Jimbo,et al.  Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .

[9]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[10]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[11]  J. Latorre,et al.  Entanglement entropy in the Lipkin-Meshkov-Glick model (4 pages) , 2004, cond-mat/0409611.

[12]  E. B. Saff,et al.  Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle , 2006 .

[13]  T. Ehrhardt A Status Report on the Asymptotic Behavior of Toeplitz Determinants with Fisher-Hartwig Singularities , 2001 .

[14]  Vladimir E. Korepin,et al.  Quantum Spin Chain, Toeplitz Determinants and the Fisher—Hartwig Conjecture , 2004 .

[15]  J I Cirac,et al.  Diverging entanglement length in gapped quantum spin systems. , 2004, Physical review letters.

[16]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[17]  E. Basor,et al.  Asymptotics of Block Toeplitz Determinants and the Classical Dimer Model , 2006, math-ph/0607065.

[18]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[19]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[20]  F. Franchini,et al.  Renyi entropy of the XY spin chain , 2007, 0707.2534.

[21]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[22]  S. Bose,et al.  Natural thermal and magnetic entanglement in the 1D Heisenberg model. , 2000, Physical review letters.

[23]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[24]  J. Latorre,et al.  Universality of entanglement and quantum-computation complexity , 2003, quant-ph/0311017.

[25]  M. Y. Mo,et al.  Entanglement Entropy in Quantum Spin Chains with Finite Range Interaction , 2007, 0708.0161.

[26]  M. Rasetti,et al.  Spin network quantum simulator , 2002, quant-ph/0209016.

[27]  Eytan Barouch,et al.  Statistical Mechanics of the XY Model. III , 1970 .

[28]  B. Silbermann,et al.  Toeplitz Determinants with One Fisher–Hartwig Singularity , 1997 .

[29]  Alfréd Rényi,et al.  Probability Theory , 1970 .

[30]  Eytan Barouch,et al.  Thermalization of a Magnetic Impurity in the Isotropic XY Model , 1970 .

[31]  Alexander Its,et al.  A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics , 1997 .

[32]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[33]  Paolo Zanardi,et al.  Holonomic quantum computation , 1999 .

[34]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  Entropy of XY Spin Chain and Block Toeplitz Determinants , 2006, quant-ph/0606178.

[36]  V. Korepin,et al.  Universality of entropy scaling in one dimensional gapless models. , 2003, Physical Review Letters.

[37]  V. S. Kapitonov,et al.  Time-Dependent Correlators of Local Spins of the One-Dimensional XY Heisenberg Chain , 2003 .

[38]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[39]  Vladimir E. Korepin,et al.  Differential Equations for Quantum Correlation Functions , 1990 .

[40]  A. Lenard Momentum Distribution in the Ground State of the One-Dimensional System of Impenetrable Bosons , 1964 .

[41]  Gap probability in the spectrum of random matrices and asymptotics of polynomials orthogonal on an arc of the unit circle , 2004, math/0401258.

[42]  Integrable Fredholm Operators and Dual Isomonodromic Deformations , 1997, solv-int/9706002.

[43]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[44]  V. Korepin,et al.  Entanglement in the XY spin chain , 2004 .

[45]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[46]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[47]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[48]  Asymptotics for Toeplitz determinants on a circular arc , 2004, math/0401256.

[49]  A. Böttcher,et al.  Notes on the asymptotic behavior of block TOEPLITZ matrices and determinants , 1980 .

[50]  Hai-Qing Lin,et al.  Entanglement of the Heisenberg chain with the next-nearest-neighbor interaction , 2004, quant-ph/0403026.

[51]  T. Wu,et al.  Theory of Toeplitz Determinants and the Spin Correlations of the Two-Dimensional Ising Model. III , 1967 .

[52]  Martin B Plenio,et al.  Three-spin interactions in optical lattices and criticality in cluster Hamiltonians. , 2004, Physical review letters.

[53]  V. Roychowdhury,et al.  Entanglement in a valence-bond solid state. , 2004, Physical review letters.

[54]  Ingo Peschel On the entanglement entropy for an XY spin chain , 2004 .

[55]  C. Tracy,et al.  The Fisher-Hartwig conjecture and generalizations☆ , 1991 .

[56]  Estelle L. Basor,et al.  Asymptotic formulas for Toeplitz determinants , 1978 .

[57]  Emptiness Formation Probability for the One-Dimensional Isotropic XY Model , 2001, cond-mat/0106062.

[58]  A. Böttcher,et al.  Toeplitz matrices and determinants with Fisher-Hartwig symbols , 1985 .

[59]  Michael E. Fisher,et al.  Toeplitz Determinants: Some Applications, Theorems, and Conjectures , 2007 .

[60]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[61]  B. McCoy The connection between statistical mechanics and quantum field theory , 1994, hep-th/9403084.

[62]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[63]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[64]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[65]  Shi-Jian Gu,et al.  Entanglement, quantum phase transition, and scaling in the XXZ chain , 2003 .

[66]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[67]  E. Saff,et al.  Szego Orthogonal Polynomials with Respect to an Analytic Weight: Canonical Representation and Strong Asymptotics , 2005, math/0502300.

[68]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.

[69]  José Ignacio Latorre,et al.  Ground state entanglement in quantum spin chains , 2004, Quantum Inf. Comput..

[70]  On the Determinant Formulas by Borodin, Okounkov, Baik, Deift and Rains , 2001, math/0101008.

[71]  F. Mezzadri,et al.  Random Matrix Theory and Entanglement in Quantum Spin Chains , 2004, quant-ph/0407047.

[72]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[73]  P. Deift,et al.  Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities , 2009, 0905.0443.

[74]  P. Zanardi,et al.  Entanglement and Quantum Phase Transition in Low Dimensional Spin Systems , 2004, quant-ph/0407228.

[75]  A. Lenard Some remarks on large Toeplitz determinants , 1972 .

[76]  H. Widom The Strong Szego Limit Theorem for Circular Arcs , 1971 .

[77]  Eytan Barouch,et al.  Dynamics of a Local Perturbation in the XY Model. I—Approach to Equilibrium , 1971 .

[78]  H. Widom On the limit of block Toeplitz determinants , 1975 .

[79]  Emptiness formation probability for the anisotropic XY spin chain in a magnetic field , 2003, cond-mat/0307001.

[80]  H. Widom Asymptotic behavior of block Toeplitz matrices and determinants. II , 1974 .

[81]  H. Widom Toeplitz Determinants with Singular Generating Functions , 1973 .