High-indium-content InxGa1−xAs/GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature
暂无分享,去创建一个
Zhichuan Niu | Haiqiao Ni | Xuecheng Wei | Q. Han | L. Bian | H. Ni | Xuecheng Wei | Q. Han | W. Zhang | Zhoutong He | Xiaoxia Xu | Yuzhuan Xu | W. Zhang | L. F. Bian | Zhoutong He | R. H. Wu | R. Wu | Yuzhuan Xu | Zhichuan Niu | Xiaoxiao Xu | X. Wei
[1] M. Cerullo,et al. Low‐temperature growth of Ge on Si(100) , 1991 .
[2] J. Woicik,et al. STRAIN AND RELAXATION IN INAS AND INGAAS FILMS GROWN ON GAAS(001) , 1996 .
[3] Thorvald G. Andersson,et al. Variation of the critical layer thickness with In content in strained InxGa1−xAs‐GaAs quantum wells grown by molecular beam epitaxy , 1987 .
[4] J. Merz,et al. Temperature effects on the radiative recombination in self-assembled quantum dots , 1996 .
[5] Hao-Hsiung Lin,et al. Highly strained 1.24-mum InGaAs/GaAs quantum-well lasers , 2003 .
[6] C. Wie. Relaxation and rocking‐curve broadening of strained (Ga,In)As single layers on (001) GaAs , 1989 .
[7] P. Bhattacharya,et al. Determination of critical layer thickness and strain tensor in InxGa1−xAs/GaAs quantum‐well structures by x‐ray diffraction , 1993 .
[8] D. Dunstan,et al. Plastic relaxation of InGaAs grown on GaAs , 1991 .
[9] Wei Li,et al. Effects of insertion of strain-mediating layers on luminescence properties of 1.3-μm GaInNAs/GaNAs/GaAs quantum-well structures , 2002 .
[10] M. Lin,et al. Role of molecular beam epitaxy parameters on InGaAs surface roughness , 2001 .
[11] Noritaka Usami,et al. Is low temperature growth the solution to abrupt Si⧸Si1-xGex interface formation? , 1993 .
[12] Yichao Lin,et al. STRAIN RELAXATION OF GANXAS1-X ON GAAS (001) GROWN BY MOLECULAR-BEAM EPITAXY , 1999 .
[13] P. J. Caldwell,et al. Properties of InxGa1−xAs‐GaAs strained‐layer quantum‐well‐heterostructure injection lasers , 1985 .
[14] Emil S. Koteles,et al. Low substrate temperature molecular beam epitaxial growth and the critical layer thickness of InGaAs grown on GaAs , 1991 .
[15] J. W. Matthews,et al. Defects in epitaxial multilayers , 1974 .
[16] Lin-wang Wang,et al. Solving Schrödinger’s equation around a desired energy: Application to silicon quantum dots , 1994 .
[17] Takahiro Kitada,et al. Larger critical thickness determined by photoluminescence measurements in pseudomorphic In0.25Ga0.75As/Al0.32Ga0.68As quantum well grown on (411)A GaAs substrates by molecular beam epitaxy , 1999 .
[18] B. F. Levine,et al. Quantum‐well infrared photodetectors , 1993 .
[19] Larry A. Coldren,et al. High‐speed InGaAs/GaAs strained multiple quantum well lasers with low damping , 1991 .
[20] Price. Critical-thickness and growth-mode transitions in highly strained InxGa1-xAs films. , 1991, Physical review letters.
[21] T. Anan,et al. Critical layer thickness on (111)B‐oriented InGaAs/GaAs heteroepitaxy , 1992 .
[22] T. Tsuruoka,et al. Formation of misfit dislocations in GaAs/InGaAs multiquantum wells observed by photoluminescence microscopy , 2002 .
[23] H. Ni,et al. Electronic properties ofGaAs/GayIn1−yNxAs1−y−xSbysuperlattices , 2003 .
[24] J. Woodall,et al. An In0.15Ga0.85As/GaAs pseudomorphic single quantum well HEMT , 1985, IEEE Electron Device Letters.