High-indium-content InxGa1−xAs/GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature

High-indium-content InxGa1-xAs/GaAs single/multi-quantum well (SQW/MQW) structures have been systematically investigated. By optimizing the molecular-beam epitaxy growth conditions, the critical thickness of the strained In0.475Ga0.525As/GaAs QWs is raised to 7 nm, which is much higher than the value given by the Matthews and Blakeslee model. The good crystalline quality of the strained InGaAs/GaAs MQWs is proved by x-ray rocking curves. Photoluminescence measurements show that an emission wavelength of 1.25 mum at room temperatures with narrower full width at half maximum less than 30 meV can be obtained. The strain relaxation mechanism is discussed using the Matthews-Blakeslee model. (C) 2004 American Institute of Physics.

[1]  M. Cerullo,et al.  Low‐temperature growth of Ge on Si(100) , 1991 .

[2]  J. Woicik,et al.  STRAIN AND RELAXATION IN INAS AND INGAAS FILMS GROWN ON GAAS(001) , 1996 .

[3]  Thorvald G. Andersson,et al.  Variation of the critical layer thickness with In content in strained InxGa1−xAs‐GaAs quantum wells grown by molecular beam epitaxy , 1987 .

[4]  J. Merz,et al.  Temperature effects on the radiative recombination in self-assembled quantum dots , 1996 .

[5]  Hao-Hsiung Lin,et al.  Highly strained 1.24-mum InGaAs/GaAs quantum-well lasers , 2003 .

[6]  C. Wie Relaxation and rocking‐curve broadening of strained (Ga,In)As single layers on (001) GaAs , 1989 .

[7]  P. Bhattacharya,et al.  Determination of critical layer thickness and strain tensor in InxGa1−xAs/GaAs quantum‐well structures by x‐ray diffraction , 1993 .

[8]  D. Dunstan,et al.  Plastic relaxation of InGaAs grown on GaAs , 1991 .

[9]  Wei Li,et al.  Effects of insertion of strain-mediating layers on luminescence properties of 1.3-μm GaInNAs/GaNAs/GaAs quantum-well structures , 2002 .

[10]  M. Lin,et al.  Role of molecular beam epitaxy parameters on InGaAs surface roughness , 2001 .

[11]  Noritaka Usami,et al.  Is low temperature growth the solution to abrupt Si⧸Si1-xGex interface formation? , 1993 .

[12]  Yichao Lin,et al.  STRAIN RELAXATION OF GANXAS1-X ON GAAS (001) GROWN BY MOLECULAR-BEAM EPITAXY , 1999 .

[13]  P. J. Caldwell,et al.  Properties of InxGa1−xAs‐GaAs strained‐layer quantum‐well‐heterostructure injection lasers , 1985 .

[14]  Emil S. Koteles,et al.  Low substrate temperature molecular beam epitaxial growth and the critical layer thickness of InGaAs grown on GaAs , 1991 .

[15]  J. W. Matthews,et al.  Defects in epitaxial multilayers , 1974 .

[16]  Lin-wang Wang,et al.  Solving Schrödinger’s equation around a desired energy: Application to silicon quantum dots , 1994 .

[17]  Takahiro Kitada,et al.  Larger critical thickness determined by photoluminescence measurements in pseudomorphic In0.25Ga0.75As/Al0.32Ga0.68As quantum well grown on (411)A GaAs substrates by molecular beam epitaxy , 1999 .

[18]  B. F. Levine,et al.  Quantum‐well infrared photodetectors , 1993 .

[19]  Larry A. Coldren,et al.  High‐speed InGaAs/GaAs strained multiple quantum well lasers with low damping , 1991 .

[20]  Price Critical-thickness and growth-mode transitions in highly strained InxGa1-xAs films. , 1991, Physical review letters.

[21]  T. Anan,et al.  Critical layer thickness on (111)B‐oriented InGaAs/GaAs heteroepitaxy , 1992 .

[22]  T. Tsuruoka,et al.  Formation of misfit dislocations in GaAs/InGaAs multiquantum wells observed by photoluminescence microscopy , 2002 .

[23]  H. Ni,et al.  Electronic properties ofGaAs/GayIn1−yNxAs1−y−xSbysuperlattices , 2003 .

[24]  J. Woodall,et al.  An In0.15Ga0.85As/GaAs pseudomorphic single quantum well HEMT , 1985, IEEE Electron Device Letters.