Improving Twitter Sentiment Analysis with Topic-Based Mixture Modeling and Semi-Supervised Training

In this paper, we present multiple approaches to improve sentiment analysis on Twitter data. We first establish a state-of-the-art baseline with a rich feature set. Then we build a topic-based sentiment mixture model with topic-specific data in a semi-supervised training framework. The topic information is generated through topic modeling based on an efficient implementation of Latent Dirichlet Allocation (LDA). The proposed sentiment model outperforms the top system in the task of Sentiment Analysis in Twitter in SemEval-2013 in terms of averaged F scores.

[1]  Saif Mohammad,et al.  NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets , 2013, *SEMEVAL.

[2]  Andrew McCallum,et al.  Efficient methods for topic model inference on streaming document collections , 2009, KDD.

[3]  Xu Ling,et al.  Topic sentiment mixture: modeling facets and opinions in weblogs , 2007, WWW '07.

[4]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[5]  Brendan T. O'Connor,et al.  Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments , 2010, ACL.

[6]  Xiaotie Deng,et al.  Exploiting Topic based Twitter Sentiment for Stock Prediction , 2013, ACL.

[7]  Regina Barzilay,et al.  Learning Document-Level Semantic Properties from Free-Text Annotations , 2008, ACL.

[8]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[9]  Alice H. Oh,et al.  Aspect and sentiment unification model for online review analysis , 2011, WSDM '11.

[10]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[11]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[12]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Wei Gao,et al.  Tracking Sentiment and Topic Dynamics from Social Media , 2012, ICWSM.

[14]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..