Cyclic permutations realized by signed shifts

The periodic (ordinal) patterns of a map are the permutations realized by the relative order of the points in its periodic orbits. We give a combinatorial characterization of the periodic patterns of an arbitrary signed shift, in terms of the structure of the descent set of a certain cyclic permutation associated to the pattern. Signed shifts are an important family of one-dimensional dynamical systems that includes shift maps and the tent map as particular cases. Defined as a function on the set of infinite words on a finite alphabet, a signed shift deletes the first letter and, depending on its value, possibly applies the complementation operation on the remaining word. For shift maps, reverse shift maps, and the tent map, we give exact formulas for their number of periodic patterns. As a byproduct of our work, we recover results of Gessel--Reutenauer and Weiss--Rogers and obtain new enumeration formulas for pattern-avoiding cycles.

[1]  José Amigó,et al.  Permutation Complexity in Dynamical Systems , 2010 .

[2]  Miguel A. F. Sanjuán,et al.  True and false forbidden patterns in deterministic and random dynamics , 2007 .

[3]  G. Keller,et al.  Entropy of interval maps via permutations , 2002 .

[4]  The Cycle Enumerator of Unimodal Permutations , 2001, math/0102051.

[5]  Nikola Ruskuc,et al.  Regular closed sets of permutations , 2003, Theor. Comput. Sci..

[6]  José María Amigó,et al.  Detecting Determinism in Time Series with Ordinal Patterns: a Comparative Study , 2010, Int. J. Bifurc. Chaos.

[7]  Sergi Elizalde The Number of Permutations Realized By a Shift , 2009, SIAM J. Discret. Math..

[8]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[9]  Nikola Ruskuc,et al.  Simple permutations: Decidability and unavoidable substructures , 2008, Theor. Comput. Sci..

[10]  M. Misiurewicz,et al.  Comparing Periodic Orbits of Maps of the Interval , 1992 .

[11]  Sergi Elizalde Permutations and β-shifts , 2011, J. Comb. Theory, Ser. A.

[12]  Terry Gannon The cyclic structure of unimodal permutations , 2001, Discret. Math..

[13]  Some results on the Sarkovskii partial ordering of permutations , 1991 .

[14]  Jacob Steinhardt Permutations with Ascending and Descending Blocks , 2010, Electron. J. Comb..

[15]  José María Amigó,et al.  Forbidden patterns and shift systems , 2008, J. Comb. Theory, Ser. A.

[16]  M. Misiurewicz,et al.  Combinatorial patterns for maps of the interval , 1991 .

[17]  Salwa Bouall,et al.  On Primitive Words , 2010 .

[18]  Ira M. Gessel,et al.  Counting Permutations with Given Cycle Structure and Descent Set , 1993, J. Comb. Theory A.

[19]  José María Amigó The Ordinal Structure of the Signed Shift Transformations , 2009, Int. J. Bifurc. Chaos.

[20]  SIMPLE PERIODIC ORBITS OF MAPPINGS OF THE INTERVAL , 2010 .

[21]  A. N. Sharkovskiĭ COEXISTENCE OF CYCLES OF A CONTINUOUS MAP OF THE LINE INTO ITSELF , 1995 .

[22]  鈴木 雅之,et al.  On Iterated Maps of the Interval , 1981 .

[23]  Nikola Ruskuc,et al.  Partially Well-Ordered Closed Sets of Permutations , 2002, Order.

[24]  Yangyang Liu,et al.  On basic forbidden patterns of functions , 2011, Discret. Appl. Math..

[25]  J. Bobok,et al.  X-minimal patterns and a generalization of Sharkovskiĭ's theorem , 1998 .