In vitro and in vivo assessments of inspired Ag/80S bioactive nanocomposites against carbapenem-resistant Klebsiella pneumoniae.

[1]  D. S. Pellosi,et al.  Synthesis of Pluronic-based silver nanoparticles/methylene blue nanohybrids: Influence of the metal shape on photophysical properties. , 2020, Materials science & engineering. C, Materials for biological applications.

[2]  C. Shih,et al.  Antibacterial Activity of Silver Nanoparticles (AgNP) Confined to Mesostructured, Silica-Based Calcium Phosphate against Methicillin-Resistant Staphylococcus aureus (MRSA) , 2020, Nanomaterials.

[3]  G. R. Castro,et al.  Antimicrobial activities of bacterial cellulose - Silver montmorillonite nanocomposites for wound healing. , 2020, Materials science & engineering. C, Materials for biological applications.

[4]  Qilin Yu,et al.  Enzyme-Responsive Ag Nanoparticle Assemblies in Targeting Antibacterial against Methicillin-Resistant Staphylococcus Aureus. , 2020, ACS applied materials & interfaces.

[5]  G. Sotiriou,et al.  Nanosilver Targets the Bacterial Cell Envelope: The Link with Generation of Reactive Oxygen Radicals. , 2020, ACS applied materials & interfaces.

[6]  P. Lu,et al.  Contributions of insertion sequences conferring colistin resistance in Klebsiella pneumoniae. , 2020, International journal of antimicrobial agents.

[7]  Richard J. Goater,et al.  Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread , 2019, Nature Microbiology.

[8]  Chad W. Euler,et al.  Lysocins: Bioengineered Antimicrobials That Deliver Lysins across the Outer Membrane of Gram-Negative Bacteria , 2019, Antimicrobial Agents and Chemotherapy.

[9]  Guojun Wu,et al.  Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa , 2019, International journal of nanomedicine.

[10]  V. Zucolotto,et al.  Controlled Release of Silver Nanoparticles Contained in Photoresponsive Nanogels. , 2019, ACS applied bio materials.

[11]  C. Hung,et al.  Antibacterial activity of silver nanoparticle (AgNP) confined mesoporous structured bioactive powder against Enterococcus faecalis infecting root canal systems , 2018, Journal of Non-Crystalline Solids.

[12]  W. Ko,et al.  Carbapenem-Resistant Enterobacteriaceae Infections: Taiwan Aspects , 2018, Front. Microbiol..

[13]  M. Bassetti,et al.  Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control , 2018, Expert review of anti-infective therapy.

[14]  Alexandru Mihai Grumezescu,et al.  Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview , 2018, Nanomaterials.

[15]  G. Jiang,et al.  Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. , 2018, Metallomics : integrated biometal science.

[16]  M. Samore,et al.  A systematic review of the epidemiology of carbapenem-resistant Enterobacteriaceae in the United States , 2018, Antimicrobial Resistance & Infection Control.

[17]  P. Kulpiński,et al.  Antibacterial composite cellulose fibers modified with silver nanoparticles and nanosilica , 2018, Cellulose.

[18]  K. Schlich,et al.  Silver nanoparticles in sewage treatment plant effluents: chronic effects and accumulation of silver in the freshwater amphipod Hyalella azteca , 2018, Environmental Sciences Europe.

[19]  F. Codjoe,et al.  Carbapenem Resistance: A Review , 2017, Medical sciences.

[20]  Vandana Solanki,et al.  Polyvinylpyrrolidone-Capped Silver Nanoparticle Inhibits Infection of Carbapenem-Resistant Strain of Acinetobacter baumannii in the Human Pulmonary Epithelial Cell , 2017, Front. Immunol..

[21]  Hao Zhang,et al.  Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities , 2017 .

[22]  Abdul Subhan Talpur,et al.  Combination Therapy for Multidrug-Resistant Klebsiella Pneumoniae Urinary Tract Infection , 2017, Cureus.

[23]  R. Salomoni,et al.  Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa , 2017, Nanotechnology, science and applications.

[24]  Rohit K. Sharma,et al.  A Novel Approach for Combating Klebsiella pneumoniae Biofilm Using Histidine Functionalized Silver Nanoparticles , 2017, Front. Microbiol..

[25]  Sui-Mae Lee,et al.  The role of reactive oxygen species in the antimicrobial activity of pyochelin , 2017, Journal of advanced research.

[26]  S. Klaynongsruang,et al.  Two-Phase Bactericidal Mechanism of Silver Nanoparticles against Burkholderia pseudomallei , 2016, PloS one.

[27]  Tikam Chand Dakal,et al.  Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles , 2016, Frontiers in microbiology.

[28]  Chiung-Yao Huang,et al.  5-Episinuleptolide Decreases the Expression of the Extracellular Matrix in Early Biofilm Formation of Multi-Drug Resistant Acinetobacter baumannii , 2016, Marine drugs.

[29]  J. Mecsas,et al.  Klebsiella pneumoniae: Going on the Offense with a Strong Defense , 2016, Microbiology and Molecular Reviews.

[30]  A. Rostami,et al.  Silver- and fluoride-containing mesoporous bioactive glasses versus commonly used antibiotics: Activity against multidrug-resistant bacterial strains isolated from patients with burns. , 2016, Burns : journal of the International Society for Burn Injuries.

[31]  C. Shiau,et al.  In vitro and in vivo activity of a novel sorafenib derivative SC5005 against MRSA. , 2016, The Journal of antimicrobial chemotherapy.

[32]  R. Raghav,et al.  Comparative Anti-Bacterial Activity of Differently Capped Silver Nanomaterial on the Carbapenem Sensitive and Resistant Strains ofAcinetobacter baumannii , 2015 .

[33]  Tao Liu,et al.  Preparation and antibacterial property of silver-containing mesoporous 58S bioactive glass. , 2014, Materials science & engineering. C, Materials for biological applications.

[34]  H. Goudarzi,et al.  Prevalence of bla NDM, bla PER, bla VEB, bla IMP, and bla VIM Genes among Acinetobacter baumannii Isolated from Two Hospitals of Tehran, Iran , 2014, Scientifica.

[35]  Yee-Chun Chen,et al.  First Report of blaIMP-8 in Raoultella planticola , 2013, Antimicrobial Agents and Chemotherapy.

[36]  Y. Chuang,et al.  National Surveillance Study on Carbapenem Non-Susceptible Klebsiella pneumoniae in Taiwan: The Emergence and Rapid Dissemination of KPC-2 Carbapenemase , 2013, PloS one.

[37]  D. Chakravortty,et al.  Interaction of Silver Nanoparticles with Serum Proteins Affects Their Antimicrobial Activity In Vivo , 2013, Antimicrobial Agents and Chemotherapy.

[38]  D. Caputo,et al.  Silver-containing mesoporous bioactive glass with improved antibacterial properties , 2013, Journal of Materials Science: Materials in Medicine.

[39]  D. van Duin,et al.  Carbapenem-resistant Enterobacteriaceae: A menace to our most vulnerable patients , 2013, Cleveland Clinic Journal of Medicine.

[40]  E. Klein,et al.  Trends in Resistance to Carbapenems and Third-Generation Cephalosporins among Clinical Isolates of Klebsiella pneumoniae in the United States, 1999–2010 , 2013, Infection Control & Hospital Epidemiology.

[41]  S. Prabhu,et al.  Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects , 2012, International Nano Letters.

[42]  Jiang Chang,et al.  Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application , 2012, Interface Focus.

[43]  Clsi Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement , 2010 .

[44]  Majid Montazer,et al.  A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. , 2010, Colloids and surfaces. B, Biointerfaces.

[45]  J. Alexander,et al.  History of the medical use of silver. , 2009, Surgical infections.

[46]  M. Rai,et al.  Silver nanoparticles as a new generation of antimicrobials. , 2009, Biotechnology advances.

[47]  Gopi Patel,et al.  Outcomes of Carbapenem-Resistant Klebsiella pneumoniae Infection and the Impact of Antimicrobial and Adjunctive Therapies , 2008, Infection Control & Hospital Epidemiology.

[48]  Jien-Wei Liu,et al.  Collateral damage of flomoxef therapy: in vivo development of porin deficiency and acquisition of blaDHA-1 leading to ertapenem resistance in a clinical isolate of Klebsiella pneumoniae producing CTX-M-3 and SHV-5 beta-lactamases. , 2007, The Journal of antimicrobial chemotherapy.

[49]  S. Schabrun,et al.  Healthcare equipment as a source of nosocomial infection: a systematic review. , 2006, The Journal of hospital infection.

[50]  J. Wu,et al.  OXA-type beta-lactamases among extended-spectrum cephalosporin-resistant Pseudomonas aeruginosa isolates in a university hospital in southern Taiwan. , 2006, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[51]  H. Goossens,et al.  Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. , 2004, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[52]  Larry L. Hench,et al.  Broad-Spectrum Bactericidal Activity of Ag2O-Doped Bioactive Glass , 2002, Antimicrobial Agents and Chemotherapy.

[53]  L. Hench,et al.  Bacteriostatic action of a novel four-component bioactive glass. , 2000, Journal of biomedical materials research.