Finite-image property of weighted tree automata over past-finite monotonic strong bimonoids

We consider weighted tree automata over strong bimonoids (for short: wta). A wta A has the finite-image property if its recognized weighted tree language [[A]] has finite image; moreover, A has the preimage property if the preimage under [[A]] of each element of the underlying strong bimonoid is a recognizable tree language. For each wta A over a past-finite monotonic strong bimonoid we prove the following results. In terms of A’s structural properties, we characterize whether it has the finite-image property. We characterize those past-finite monotonic strong bimonoids such that for each wta A it is decidable whether A has the finite-image property. In particular, the finite-image property is decidable for wta over past-finite monotonic semirings. Moreover, we prove that A has the preimage property. All our results also hold for weighted string automata. Research of this author was supported by grant TUDFO/47138-1/2019-ITM of the Ministry for Innovation and Technology, Hungary. Supported by the ÚNKP-20-3 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund.

[1]  Imre Simon,et al.  On Finite Semigroups of Matrices , 1977, Theor. Comput. Sci..

[2]  Manfred Droste,et al.  Crisp-Determinization of Weighted Tree Automata over Additively Locally Finite and Past-Finite Monotonic Strong Bimonoids Is Decidable , 2020, DCFS.

[3]  Symeon Bozapalidis,et al.  Weighted Grammars and Kleene's Theorem , 1987, Inf. Process. Lett..

[4]  W. Wechler The concept of fuzziness in automata and language theory , 1978 .

[5]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[6]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[7]  Zoltán Ésik,et al.  Fuzzy tree automata , 2007, Fuzzy Sets Syst..

[8]  Zoltán Fülöp,et al.  Crisp-determinization of weighted tree automata over strong bimonoids , 2021, Discret. Math. Theor. Comput. Sci..

[9]  Olympia Louscou-Bozapalidou Some remarks on recognizable treeseries , 1999, Int. J. Comput. Math..

[10]  Zoltán Fülöp,et al.  A Kleene Theorem for Weighted Tree Automata over Distributive Multioperator Monoids , 2007, Theory of Computing Systems.

[11]  Editors , 2003 .

[12]  Manfred Droste,et al.  Determinization of weighted finite automata over strong bimonoids , 2010, Inf. Sci..

[13]  Manfred Droste,et al.  Weighted automata and weighted MSO logics for average and long-time behaviors , 2012, Inf. Comput..

[14]  Björn Borchardt,et al.  A Pumping Lemma and Decidability Problems for Recognizable Tree Series , 2004, Acta Cybern..

[15]  M. W. Shields An Introduction to Automata Theory , 1988 .

[16]  Berndt Farwer,et al.  ω-automata , 2002 .

[17]  Zoltán Fülöp,et al.  A Büchi-Like Theorem for Weighted Tree Automata over Multioperator Monoids , 2010, Theory of Computing Systems.

[18]  M. Anand “1984” , 1962 .

[19]  Ines Klimann,et al.  Deciding unambiguity and sequentiality from a finitely ambiguous max-plus automaton , 2004, Theor. Comput. Sci..

[20]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[21]  Jean Berstel,et al.  Recognizable Formal Power Series on Trees , 1982, Theor. Comput. Sci..

[22]  Werner Kuich,et al.  Semirings and Formal Power Series: Their Relevance to Formal Languages and Automata , 1997, Handbook of Formal Languages.

[23]  Manfred Droste,et al.  Weighted Unranked Tree Automata over Tree Valuation Monoids and Their Characterization by Weighted Logics , 2015, CAI.

[24]  Michael A. Arbib,et al.  An Introduction to Formal Language Theory , 1988, Texts and Monographs in Computer Science.

[25]  Zoltán Ésik,et al.  Formal Tree Series , 2002, J. Autom. Lang. Comb..

[26]  H. Vogler,et al.  Weighted Tree Automata and Tree Transducers , 2009 .

[27]  Manfred Droste,et al.  Weighted finite automata over strong bimonoids , 2010, Inf. Sci..

[28]  Manfred Droste,et al.  Weighted Tree Automata over Valuation Monoids and Their Characterization by Weighted Logics , 2011, Algebraic Foundations in Computer Science.

[29]  M. Droste,et al.  Semirings and Formal Power Series , 2009 .

[30]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[31]  D. Radovanović WEIGHTED TREE AUTOMATA OVER STRONG BIMONOIDS , 2010 .

[32]  Yasuyoshi Inagaki,et al.  ON THE DESCRIPTION OF FUZZY MEANING OF CONTEXT-FREE LANGUAGE , 1975 .

[33]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[34]  Zoltán Fülöp,et al.  Bounds for Tree Automata with Polynomial Costs , 2005, J. Autom. Lang. Comb..

[35]  Helmut Seidl On the finite degree of ambiguity of finite tree automata , 2004, Acta Informatica.

[36]  Antonio Restivo,et al.  Rational Languages and the Burnside Problem , 1985, Theor. Comput. Sci..

[37]  Manfred Droste,et al.  Weighted tree automata and weighted logics , 2006, Theor. Comput. Sci..

[38]  Manfred Droste,et al.  Weighted automata and multi-valued logics over arbitrary bounded lattices , 2012, Theor. Comput. Sci..

[39]  Heiko Vogler,et al.  Cut sets as recognizable tree languages , 2006, Fuzzy Sets Syst..

[40]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .