A redundant internal coordinate algorithm for optimization of periodic systems

The algorithm for optimizing molecular geometries in redundant internal coordinates is extended to periodic systems. The lattice vectors are not explicitly included in the set of optimized coordinates, but are adjusted only implicitly via a combination of chemically meaningful inter- and intracell internal coordinates. The Wilson B matrix required for coordinate transformations is modified to include internal coordinate derivatives with respect to lattice vectors. The efficiency of the algorithm is demonstrated on a one-dimensional polymer, poly(p-phenylenevinylene), and a three-dimensional crystal of urea.

[1]  M. Miao,et al.  Density functional calculations of the structure of crystalline urea under high pressure , 2000 .

[2]  Dimas Suárez,et al.  Critical assessment of the performance of the semiempirical divide and conquer method for single point calculations and geometry optimizations of large chemical systems , 2000 .

[3]  H. Bernhard Schlegel,et al.  Methods for optimizing large molecules. II. Quadratic search , 1999 .

[4]  Gustavo E. Scuseria,et al.  Linear Scaling Density Functional Calculations with Gaussian Orbitals , 1999 .

[5]  Ivo Souza,et al.  Metric tensor as the dynamical variable for variable-cell-shape molecular dynamics , 1997 .

[6]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[7]  R. Ahlrichs,et al.  Geometry optimization in generalized natural internal coordinates , 1999 .

[8]  R. Fletcher Practical Methods of Optimization , 1988 .

[9]  H. Bernhard Schlegel,et al.  ESTIMATING STRETCHING FORCE CONSTANTS FOR GEOMETRY OPTIMIZATION , 1997 .

[10]  R. K. McMullan,et al.  The crystal structure and molecular thermal motion of urea at 12, 60 and 123 K from neutron diffraction , 1984 .

[11]  Gustavo E. Scuseria,et al.  A fast multipole method for periodic systems with arbitrary unit cell geometries , 1998 .

[12]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[13]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[14]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .