The circumburst environment of a FRED GRB: Study of the prompt emission and X-ray/optical afterglow of GRB 051111

Aims. We report a multi-wavelength analysis of the prompt emission and early afterglow of GRB 051111 and discuss its properties in the context of current fireball models. Methods. The detection of GRB 051111 by the Burst Alert Telescope on-board Swift triggered early BVRi’ observations with the 2-m robotic Faulkes Telescope North in Hawaii, as well as X-ray observations with the Swift X-Ray Telescope. Results. The promptγ-ray emission shows a classical FRED profile. The optical aft erglow light curves are fitted with a broken power law, withα1 = 0.35 toα2 = 1.35 and a break time around 12 minutes after the GRB. Although contemporaneous X-ray observations were not taken, a power law connection between theγ-ray tail of the FRED temporal profile and the late XRT flux deca y is feasible. Alternatively, if the X-ray afterglow tracks the optical de cay, this would represent one of the first GRBs for which the ca nonical steep-shallow-normal decay typical of early X-ray afterglows has been monitored optically. We present a detailed analysis of the intrinsic extinction, elemental abundances and spectral e nergy distribution. From the absorption measured in the low X-ray band we find possible evidence for an overabundance of some α elements such as oxygen, [O/Zn]=0.7± 0.3, or, alternatively, for a significant presence of molecular gas. The IR-to-X-ray Spectral Energy Distribution measured at 80 minutes after the burst is consistent with the cooling break lying between the optical and X-ray bands. Extensive modelling of the intrinsic extinction suggests dust with big grains or grey extinction profiles. The early optical break is due ei ther to an energy injection episode or, less probably, to a st ratified wind environment for the circumburst medium.

[1]  C. Guidorzi,et al.  The Automatic Real‐Time Gamma‐Ray Burst Pipeline of the 2 m Liverpool Telescope , 2005, astro-ph/0511032.

[2]  E. Oliva,et al.  A supernova origin for dust in a high-redshift quasar , 2004, Nature.

[3]  P. Giommi,et al.  An unexpectedly rapid decline in the X-ray afterglow emission of long γ-ray bursts , 2005, Nature.

[4]  C. Kouveliotou,et al.  The Fourth BATSE Gamma-Ray Burst Catalog (Revised) , 1999, astro-ph/9903205.

[5]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[6]  E. Oliva,et al.  Dust in active nuclei - II. Powder or gravel? , 2000, astro-ph/0010066.

[7]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[8]  F. A. Harrison,et al.  A Study of the Afterglows of Four GRBs: Constraining the Explosion and Fireball Model , 2003, astro-ph/0307056.

[9]  Victoria,et al.  Gas and dust properties in the afterglow spectra of GRB 050730 , 2005, astro-ph/0508237.

[10]  P. Giommi,et al.  The Early X-Ray Emission from GRBs , 2006 .

[11]  Z. Dai,et al.  Afterglow Emission from Highly Collimated Jets with Flat Electron Spectra: Application to the GRB 010222 Case? , 2001, astro-ph/0105055.

[12]  P. Giommi,et al.  Swift observations of the X-ray-bright GRB 050315 , 2005 .

[13]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[14]  S. M. Fall,et al.  Dust Depletion and Extinction in a Gamma-Ray Burst Afterglow , 2004 .

[15]  Charles D. Dermer Curvature Effects in Gamma-Ray Burst Colliding Shells , 2004 .

[16]  D. A. Kann,et al.  Signatures of Extragalactic Dust in Pre-Swift GRB Afterglows , 2006 .

[17]  Jason X. Prochaska,et al.  On the Perils of Curve-of-Growth Analysis: Systematic Abundance Underestimates for the Gas in Gamma-Ray Burst Host Galaxies , 2006, astro-ph/0606500.

[18]  D. Burrows,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[19]  S. B. Cenko,et al.  Spectroscopy of GRB 050505 at z = 4.275: A log N(H I) = 22.1 DLA Host Galaxy and the Nature of the Progenitor , 2006 .

[20]  B. Draine,et al.  Dust Sublimation by Gamma-ray Bursts and Its Implications , 1999, astro-ph/9909020.

[21]  L. A. Antonelli,et al.  Absorption in Gamma-Ray Burst Afterglows , 2004, astro-ph/0403149.

[22]  Michael S. Bessell,et al.  UBVRI PHOTOMETRY II: THE COUSINS VRI SYSTEM, ITS TEMPERATURE AND ABSOLUTE FLUX CALIBRATION, AND RELEVANCE FOR TWO-DIMENSIONAL PHOTOMETRY. , 1979 .

[23]  Forming a constant density medium close to long gamma-ray bursts , 2006, astro-ph/0605698.

[24]  Sergio Campana,et al.  Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data , 2006 .

[25]  G. Rieke,et al.  Absolute calibration of photometry at 1 through 5 microns , 1985 .

[26]  S. M. Fall,et al.  Heavy-Element Abundances and Dust Depletions in the Host Galaxies of Three Gamma-Ray Bursts , 2002, astro-ph/0203154.

[27]  Alan Uomoto,et al.  The [CLC][ITAL]u[/ITAL][/CLC][arcmin]′[CLC][ITAL]g[/ITAL][/CLC][arcmin]′[CLC][ITAL]r[/ITAL][/CLC][arcmin]′[CLC][ITAL]i[/ITAL][/CLC][arcmin]′[CLC][ITAL]z[/ITAL][/CLC][arcmin]′ Standard-Star System , 2002 .

[28]  Davide Lazzati,et al.  Thick Fireballs and the Steep Decay in the Early X-Ray Afterglow of Gamma-Ray Bursts , 2005, astro-ph/0511658.

[29]  D. Hartmann,et al.  Gamma-ray bursts , 1995 .

[30]  C. Guidorzi,et al.  High-Quality Early-Time Light Curves of GRB 060206: Implications for Gamma-Ray Burst Environments and Energetics , 2006, astro-ph/0603181.

[31]  E. Pian,et al.  Gamma-ray bursts associated with supernovae: a systematic analysis of BATSE GRB candidates , 2005, astro-ph/0510058.

[32]  J. Bregman,et al.  Measuring Molecular, Neutral Atomic, and Warm Ionized Galactic Gas through X-Ray Absorption , 1998, astro-ph/9806385.

[33]  James E. Rhoads,et al.  X-Ray Destruction of Dust along the Line of Sight to γ-Ray Bursts , 2001, astro-ph/0106343.

[34]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[35]  Zhi-Yun Li,et al.  Gamma-Ray Burst Environments and Progenitors , 1999, astro-ph/9904417.

[36]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[37]  R. Mushotzky,et al.  Oxygen Abundances in the Milky Way Using X-Ray Absorption Measurements toward Galaxy Clusters , 2005, astro-ph/0509614.

[38]  Titus J. Galama,et al.  High Column Densities and Low Extinctions of Gamma-Ray Bursts: Evidence for Hypernovae and Dust Destruction , 2000, astro-ph/0009367.

[39]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[40]  Chile,et al.  A log NH I = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401 , 2005, astro-ph/0510368.

[41]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[42]  E. Rol,et al.  The host of GRB 030323 at z=3.372: A very high column density DLA system with a low metallicity , 2004, astro-ph/0403080.

[43]  Davide Lazzati,et al.  Time-dependent Photoionization in a Dusty Medium. II. Evolution of Dust Distributions and Optical Opacities , 2002, astro-ph/0211235.

[44]  R. S. Priddey,et al.  Probing cosmic chemical evolution with gamma-ray bursts: GRB 060206 at z = 4.048 , 2006, astro-ph/0602444.

[45]  Gerald J. Fishman,et al.  Extended Power-Law Decays in BATSE Gamma-Ray Bursts: Signatures of External Shocks? , 2002 .

[46]  L. A. Antonelli,et al.  Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997 , 1997, Nature.

[47]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[48]  Jonathan Granot Afterglow Light Curves from Impulsive Relativistic Jets with an Unconventional Structure , 2005 .

[49]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[50]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[51]  Heather Ting Ma,et al.  Rebrightening of XRF 030723: Further evidence for a two-component jet in a gamma-ray burst , 2003, astro-ph/0309360.

[52]  Chris L. Fryer,et al.  The Environments around Long-Duration Gamma-Ray Burst Progenitors , 2006, astro-ph/0604432.

[53]  A. Panaitescu Models for achromatic light‐curve breaks in gamma‐ray burst afterglows: jets, structured outflows and energy injection , 2005 .

[54]  Jason X. Prochaska,et al.  Echelle Spectroscopy of a Gamma-Ray Burst Afterglow at z = 3.969: A New Probe of the Interstellar and Intergalactic Media in the Young Universe , 2005 .

[55]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[56]  S. R. Kulkarni,et al.  Spectroscopy of GRB 051111 at z = 1.54948: Kinematics and Elemental Abundances of the GRB Environment and Host Galaxy , 2005, astro-ph/0512340.

[57]  S. Savaglio,et al.  GRBs as cosmological probes—cosmic chemical evolution , 2006, astro-ph/0609489.

[58]  A. Panaitescu,et al.  Afterglow Emission from Naked Gamma-Ray Bursts , 2000, astro-ph/0006317.