Specified discharge velocity models for numerical simulations of laminar vortex rings

We numerically and theoretically investigate the flow generated at the exit section of a piston/cylinder arrangement that is generally used in experiments to produce vortex rings. Accurate models for the velocity profile in this section (also called specified discharge velocity, SDV models) are necessary in (i) numerical simulations of laminar vortex rings that do not compute the flow inside the cylinder and (ii) in slug-models that provide a formula for the total circulation of the flow. Based on the theoretical and numerical analysis of the flow evolution in the entrance region of a pipe, we derive two new and easy to implement SDV models. A first model takes into account the unsteady evolution of the centerline velocity, while the second model also includes the time variation of the characteristics of the boundary layer at the exit plane of the vortex generator. The models are tested in axisymmetric direct numerical simulations of vortex rings. As distinguished from classical SDV model, the new models allow to accurately reproduce the characteristics of the flow. In particular, the time evolution of the total circulation is in good agreement with experimental results and previous numerical simulations including the vortex generator. The second model also provides a more realistic time evolution of the vortex ring circulation. Using the classical slug-model and the new correction for the centerline velocity, we finally derive a new and accurate analytical expression for the total circulation of the flow.

[1]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[2]  Diogo Bolster,et al.  Dynamics of thin vortex rings , 2008, Journal of Fluid Mechanics.

[3]  Ionut Danaila,et al.  Numerical simulation of the postformation evolution of a laminar vortex ring , 2008 .

[4]  Kamran Mohseni,et al.  On the Effect of Pipe Boundary Layer Growth on the Formation of a Laminar Vortex Ring Generated by a Piston/Cylinder Arrangement , 2002 .

[5]  B. W. Martin,et al.  Developing laminar flow in a pipe of circular cross-section , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  G. N. Coleman,et al.  Direct numerical simulation of vortex ring evolution from the laminar to the early turbulent regime , 2008, Journal of Fluid Mechanics.

[7]  P. Krueger Circulation and trajectories of vortex rings formed from tube and orifice openings , 2008 .

[8]  Eckart Meiburg,et al.  Development of boundary conditions for direct numerical simulations of three-dimensional vortex breakdown phenomena in semi-infinite domains , 2004 .

[9]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[10]  H. Bockhorn,et al.  Numerical verification of the similarity laws for the formation of laminar vortex rings , 2007, Journal of Fluid Mechanics.

[11]  C. K. Madnia,et al.  Direct numerical simulation of a laminar vortex ring , 1996 .

[12]  Jerrold E. Marsden,et al.  Transport and stirring induced by vortex formation , 2007, Journal of Fluid Mechanics.

[13]  N. Riley,et al.  Simulations of the formation of an axisymmetric vortex ring , 1997, Journal of Fluid Mechanics.

[14]  Kamran Mohseni,et al.  Numerical experiments on vortex ring formation , 2001, Journal of Fluid Mechanics.

[15]  I. Orlanski A Simple Boundary Condition for Unbounded Hyperbolic Flows , 1976 .

[16]  Kamran Mohseni,et al.  A model for universal time scale of vortex ring formation , 1998 .

[17]  M. Gharib,et al.  A universal time scale for vortex ring formation , 1998, Journal of Fluid Mechanics.

[18]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[19]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[20]  M. Grosenbaugh,et al.  Numerical simulation of vortex ring formation in the presence of background flow with implications for squid propulsion , 2006 .

[21]  Luc Mongeau,et al.  Effects of trailing jet instability on vortex ring formation , 2000 .

[22]  Parviz Moin,et al.  Direct simulations of turbulent flow using finite-difference schemes , 1991 .

[23]  R. Verzicco,et al.  A Finite-Difference Scheme for Three-Dimensional Incompressible Flows in Cylindrical Coordinates , 1996 .

[24]  A. K. Mohanty,et al.  Laminar flow in the entrance region of a smooth pipe , 1979, Journal of Fluid Mechanics.

[25]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[26]  Paul S. Krueger,et al.  An over-pressure correction to the slug model for vortex ring circulation , 2003, Journal of Fluid Mechanics.

[27]  Paolo Orlandi,et al.  Fluid Flow Phenomena: A Numerical Toolkit , 1999 .

[28]  H. K. Moffatt Generalised vortex rings with and without swirl , 1988 .

[29]  A. Michalke Survey on jet instability theory , 1984 .

[30]  R. Wood,et al.  Vortex Rings , 1901, Nature.

[31]  Moshe Rosenfeld,et al.  Circulation and formation number of laminar vortex rings , 1998, Journal of Fluid Mechanics.

[32]  John O. Dabiri,et al.  A revised slug model boundary layer correction for starting jet vorticity flux , 2004 .

[33]  John O. Dabiri,et al.  Starting flow through nozzles with temporally variable exit diameter , 2005, Journal of Fluid Mechanics.

[34]  M O S H E R O S E N F E L D,et al.  Circulation and formation number of laminar vortex rings , 2022 .

[35]  K. Mahesh,et al.  Passive scalar mixing in vortex rings , 2006, Journal of Fluid Mechanics.