Van Lambalgen's Theorem and High Degrees
暂无分享,去创建一个
[1] Kenshi Miyabe,et al. Truth‐table Schnorr randomness and truth‐table reducible randomness , 2011, Math. Log. Q..
[2] A. Kucera. Measure, Π10-classes and complete extensions of PA , 1985 .
[3] Joseph S. Miller,et al. Uniform almost everywhere domination , 2005, Journal of Symbolic Logic.
[4] Liang Yu. When van Lambalgen’s Theorem fails , 2006 .
[5] Rodney G. Downey,et al. Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.
[6] Stefan Kuhr,et al. Department of Mathematics and Computer Science , 2002 .
[7] A. Nies. Computability and randomness , 2009 .
[8] Max L. Warshauer,et al. Lecture Notes in Mathematics , 2001 .
[9] Johanna N. Y. Franklin,et al. Relativizations of randomness and genericity notions , 2011 .
[10] P. Odifreddi. Classical recursion theory , 1989 .
[11] R. Soare. Recursively enumerable sets and degrees , 1987 .
[12] Michiel van Lambalgen,et al. The Axiomatization of Randomness , 1990, J. Symb. Log..
[13] Wolfgang Merkle,et al. On the construction of effectively random sets , 2004, J. Symb. Log..
[14] Guohua Wu,et al. Anti-Complex Sets and Reducibilities with Tiny Use , 2011, The Journal of Symbolic Logic.
[15] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[16] André Nies,et al. Randomness, relativization and Turing degrees , 2005, J. Symb. Log..
[17] C. Schnorr. Zufälligkeit und Wahrscheinlichkeit , 1971 .
[18] S. Barry Cooper,et al. Minimal degrees and the jump operator , 1973, Journal of Symbolic Logic.
[19] Johanna N. Y. Franklin,et al. Schnorr trivial sets and truth-table reducibility , 2010, The Journal of Symbolic Logic.
[20] André Nies,et al. Kolmogorov-Loveland randomness and stochasticity , 2005, Ann. Pure Appl. Log..