Genetic dereplication of Trichoderma hypoxylon reveals two novel polycyclic lactones.

[1]  Lin Chen,et al.  Deletion of a global regulator LaeB leads to the discovery of novel polyketides in Aspergillus nidulans. , 2018, Organic & biomolecular chemistry.

[2]  Yang Teng,et al.  Hebecarposides A-K, antiproliferative lanostane-type triterpene glycosides from the leaves of Lyonia ovalifolia var. hebecarpa. , 2018, Phytochemistry.

[3]  Wei Li,et al.  A highly efficient genetic system for the identification of a harzianum B biosynthetic gene cluster in Trichoderma hypoxylon. , 2018, Microbiology.

[4]  Ying Huang,et al.  Genetic Manipulation of the COP9 Signalosome Subunit PfCsnE Leads to the Discovery of Pestaloficins in Pestalotiopsis fici. , 2017, Organic letters.

[5]  Xingzhong Liu,et al.  Trichoderpyrone, a Unique Polyketide Hybrid with a Cyclopentenone-Pyrone Skeleton from the Plant Endophytic Fungus Trichoderma gamsii. , 2017, Journal of natural products.

[6]  Peng Zhang,et al.  Deletion of a Histone Acetyltransferase Leads to the Pleiotropic Activation of Natural Products in Metarhizium robertsii. , 2017, Organic letters.

[7]  Nicholas H Oberlies,et al.  Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community , 2017, Journal of natural products.

[8]  G. Cerqueira,et al.  Discovery of McrA, a master regulator of Aspergillus secondary metabolism , 2017, Molecular microbiology.

[9]  Wei Li,et al.  A new species of Trichoderma hypoxylon harbours abundant secondary metabolites , 2016, Scientific Reports.

[10]  S. Zeilinger,et al.  Secondary metabolism in Trichoderma – Chemistry meets genomics , 2016 .

[11]  Wei Li,et al.  Polyketide Production of Pestaloficiols and Macrodiolide Ficiolides Revealed by Manipulations of Epigenetic Regulators in an Endophytic Fungus. , 2016, Organic letters.

[12]  Clay C C Wang,et al.  Development of Genetic Dereplication Strains in Aspergillus nidulans Results in the Discovery of Aspercryptin. , 2016, Angewandte Chemie.

[13]  Xingzhong Liu,et al.  Trichodermates A–F, New Cytotoxic Trichothecenes from the Plant Pathogenic Fungus Trichoderma sp. , 2016 .

[14]  M. Hashimoto,et al.  Use of a biosynthetic intermediate to explore the chemical diversity of pseudo-natural fungal polyketides. , 2015, Nature chemistry.

[15]  T. Anke,et al.  Fungal natural products in research and development. , 2014, Natural product reports.

[16]  Xingzhong Liu,et al.  Stereochemical determination of new cytochalasans from the plant endophytic fungus Trichoderma gamsii. , 2014, Fitoterapia.

[17]  Lin Chen,et al.  Trichoderones A and B: Two Pentacyclic Cytochalasans from the Plant Endophytic Fungus Trichoderma gamsii , 2012 .

[18]  Xingzhong Liu,et al.  Trichalasins C and D from the plant endophytic fungus Trichoderma gamsii. , 2012, Fitoterapia.

[19]  Xingzhong Liu,et al.  Cytochalasans with different amino-acid origin from the plant endophytic fungus Trichoderma gamsii , 2012, The Journal of Antibiotics.

[20]  J. Bok,et al.  Fast and easy method for construction of plasmid vectors using modified quick-change mutagenesis. , 2012, Methods in molecular biology.

[21]  N. A. Stover,et al.  Trichothecenes: From Simple to Complex Mycotoxins , 2011, Toxins.

[22]  A. Stierle,et al.  Anticancer compounds derived from fungal endophytes: their importance and future challenges. , 2011, Natural product reports.

[23]  Jian Huang,et al.  Trichodermatides A-D, novel polyketides from the marine-derived fungus Trichoderma reesei. , 2008, Organic letters.