Electrical doping of HgCdTe by ion implantation and heat treatment

Abstract The use of ion implantation to make junctions in HgCdTe is of increasing interest because the technique can be applied to the manufacture of infrared photovoltaic detectors, which are used for the development of focal plane array devices with a large number of pixels. For these devices, control of the doping of HgCdTe and of the building of junctions is of major importance. Using the technique of ion implantation, n-p diodes have been made in previous work using irradiation damage for the formation of an n+-doped surface region on p substrates. In more recent work, n-on-p and p-on-n diodes were successfully achieved by activation of implanted impurities after annealing of irradiation damage using indium or arsenic ions. The control of the electrical doping of the HgCdTe substrate is also very important for devices because the intrinsic properties of diodes are directly related to it. During post-implant anneals or technological heat treatment the acceptor concentration (mercury vacancies) may increase or decrease and this parameter has to be controlled throughout the process. Furthermore, this effect may have interactions on junction formation mechanisms, the annealing of defects, impurity redistribution, etc. The production of very high quality devices using ion implanted n-p junctions made in HgCdTe epilayers has been demonstrated and results obtained using ion implantation junction formation techniques are given to illustrate of device feasibility.

[1]  J. Tregilgas,et al.  Lattice defects in (Hg,Cd)Te: Investigations of their nature and evolution , 1983 .

[2]  J. Donnelly,et al.  TYPE CONVERSION AND n‐p JUNCTION FORMATION IN Hg1−xCdxTe PRODUCED BY PROTON BOMBARDMENT , 1971 .

[3]  H. Vydyanath Lattice Defects in Semiconducting Hg1 − x Cd x Te Alloys I . Defect Structure of Undoped and Copper Doped , 1981 .

[4]  T. Ipposhi,et al.  Atomic migration and surface evaporation of Hg in Hg1−x CdxTe crystals observed by 40‐MeV O5+ ion backscattering method , 1986 .

[5]  G. T. Brown,et al.  The nature of prismatic dislocation loops in undoped InP , 1983 .

[6]  D. Gitsu,et al.  Dependence of Electrophysical Parameters of TlSbSe2 Layer Crystals on Growth Conditions , 1982 .

[7]  B. Deveaud,et al.  Photoluminescence from chromium in GaAs , 1977 .

[8]  B. Pelliciari,et al.  State of the art of LPE HgCdTe at LIR , 1988 .

[9]  R. Kalish,et al.  Formation of p on n photodiodes in Hg1−xCdxTe by ion implantation and cw CO2 laser annealing , 1985 .

[10]  H. Schaake Ion implantation damage in Hg0.8Cd0.2Te , 1986 .

[11]  M. Chu Effects of annealing on Hg0.79Cd0.21Te epilayers , 1980 .

[12]  A. Hurrle,et al.  Boron ion implantation in Hg1−xCdxTe , 1982 .

[13]  R. C. Abbott,et al.  Mode of incorporation of phosphorus in Hg(0.8)Cd(0.2)Te , 1983 .

[14]  G. Nimtz,et al.  Long‐term Hall‐type conversion by vacancy diffusion in Hg1−xCdxTe at room temperature , 1979 .

[15]  B. Gnade,et al.  The effect of low temperature annealing on defects, impurities, and electrical properties of (Hg,Cd)Te , 1985 .

[16]  F. J. Bryant,et al.  The electrical properties of pbte implanted with H+ As+ or Sn+ , 1982 .

[17]  E. Gornik,et al.  Physics of Narrow Gap Semiconductors , 1982 .

[18]  Q. V. Davis,et al.  Formation of shallow photodiodes by implantation of boron into mercury cadmium telluride , 1982 .

[19]  R. Kalish,et al.  Structure of ion‐implanted and annealed Hg1−xCdxTe , 1983 .

[20]  W. G. Opyd,et al.  Thermal pulse annealing of boron‐implanted HgCdTe , 1982 .

[21]  M. H. Francombe,et al.  Effects of implantation and annealing temperatures on implantation induced damage in HgCdTe , 1982 .

[22]  J. Koehler,et al.  Annealing of Pure Gold Quenched from above 800°C , 1963 .

[23]  J. Bajaj,et al.  Some aspects of Li behavior in ion implanted HgCdTe , 1983 .

[24]  D. Seidman,et al.  Sources of thermally generated vacancies in single-crystal and polycrystalline gold , 1965 .

[25]  W. Tennant,et al.  Boron and indium ion‐implanted junctions in HgCdTe grown on CdTe and CdTe/Al2O3 , 1986 .

[26]  R. Kalish,et al.  Damage and lattice location studies in Hg implanted Hg1–xCdxTe , 1980 .

[27]  L. Palmetshofer,et al.  Ion‐implantation‐induced damage and resonant levels inPb1−xSnxTe , 1980 .

[28]  Benoit Deveaud,et al.  Chromium profiles in semi‐insulating GaAs after annealing with a Si3N4 encapsulant , 1979 .

[29]  R. S. Allgaier,et al.  Composition Limits of Stability of PbTe , 1960 .

[30]  Y. Nemirovsky,et al.  Electrical properties of ion‐implanted layers in Hg0.79Cd0.21Te , 1979 .

[31]  P. Capper The behaviour of selected impurities in CdxHg1−xTe , 1982 .

[32]  R. Farrar,et al.  The pressure-temperature phase diagrams of the HgTe and Hg1−x CdxTe systems , 1977 .

[33]  R. Roussille,et al.  Electrical and optical properties of ion implanted Hg1−xCdxTe/CdTe epilayers , 1982 .

[34]  J. Schmit,et al.  The effect of annealing temperature on the carrier concentration OF Hg0.6Cd0.4Te , 1978 .

[35]  C. Motte,et al.  Infrared photovoltaic detectors from ion‐implanted CdxHg1−xTe , 1973 .

[36]  C. L. Jones,et al.  Effects of annealing on the electrical properties of Cd/x/Hg/1-x/Te , 1982 .

[37]  L. Ghenim,et al.  Evidence, by transport measurements under hydrostatic pressure, of resonant level induced by implantation defects in expitaxial layers of Hg1−xCdxTe , 1985 .

[38]  H. Schaake The existence region of the Hg0.8Cd0.2Te phase field , 1985 .

[39]  B. Gnade,et al.  Type conversion of (Hg,Cd)Te induced by the redistribution of residual acceptor impurities , 1985 .

[40]  Y. Nemirovsky,et al.  Electrical properties of donor and acceptor implanted Hg1−xCdxTe following cw CO2 laser annealing , 1982 .

[41]  G. Destefanis Indium ion implantation in Hg0.78Cd0.22Te/CdTe , 1985 .

[42]  E. Molva,et al.  Donors and acceptors in tellurium compounds; The problem of doping and self-compensation , 1985 .

[43]  G. R. Jones,et al.  The vaporisation of Hg1-xCdxTe crystals-a case of gross incongruency , 1979 .

[44]  M. H. Kalisher The behavior of doped Hg1−xCdxTe epitaxial layers grown from Hg-rich melts , 1984 .

[45]  H. Ryssel,et al.  Ion implantation doping of Cd0.2Hg0.8Te for infrared detectors , 1980, IEEE Transactions on Electron Devices.

[46]  J. Tregilgas,et al.  Precipitation and phase stability of (Hg,Cd)Te , 1982 .

[47]  L. O. Bubulac,et al.  Behavior of implantation‐induced defects in HgCdTe , 1982 .

[48]  Zhenzhong Yu,et al.  The defects in Hg0.8Cd0.2Te annealed at high temperature , 1985 .

[49]  K.J. Riley,et al.  TP-B3 HgCdTe photodiodes for hybrid focal-plane arrays , 1979, IEEE Transactions on Electron Devices.

[50]  F. Svelto,et al.  Hg‐implanted Hg1−x Cdx Te infrared photovoltaic detectors in the 8‐ to 14‐μm range , 1973 .

[51]  L. Bubulac The role of epitaxy and substrate on junction formation in ion-implanted HgCdTe , 1985 .

[52]  M. Chen,et al.  Electrical properties of antimony-doped p-type Hg0.78Cd0•22Te liquid-phase-epitaxy films , 1986 .

[53]  W. Scanlon Precipitation of Te and Pb in PbTe Crystals , 1962 .

[54]  W. G. Opyd,et al.  Rutherford backscattering analysis of thermal-pulse annealed Hg1−xCdxTe , 1983 .

[55]  E. Johnson,et al.  Doping properties of selected impurities in Hg1−x Cdx Te , 1977 .

[56]  F. A. Kröger,et al.  Doping behavior of iodine in Hg0.8Cd0.2Te+ , 1982 .

[57]  L. Bubulac Dependence of junction formation on substrate in implanted HgCdTe , 1985 .

[58]  A. Kolodny,et al.  Properties of ion-implanted junctions in mercury—cadmium—telluride , 1980, IEEE Transactions on Electron Devices.

[59]  T. Sigmon Ion implantation in II–VI compound semiconductors , 1985 .

[60]  L. Vodopyanov,et al.  Infrared Reflection Spectroscopy of Ion‐Implanted n‐Hgo.8Cdo.2Te , 1982 .

[61]  M. Gauneau,et al.  Depth profiles of Fe and Cr in InP after annealing , 1983 .

[62]  A. W. Vere,et al.  Tellurium precipitation in bulk‐grown CdxHg1−xTe , 1986 .

[63]  J. Tregilgas,et al.  The kinetics of tellurium precipitation in Hg0.8Cd0.2Te , 1986 .