Multivariate Heteroscedasticity Models for Functional Brain Connectivity

Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI). We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP) comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

[1]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[2]  C. J. Stam,et al.  Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? , 2004, Neuroscience Letters.

[3]  Kaustubh Supekar,et al.  Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty , 2012, NeuroImage.

[4]  P. Müller,et al.  Bayesian Graphical Models for Differential Pathways , 2016 .

[5]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[6]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[7]  Jonathan D. Power,et al.  Prediction of Individual Brain Maturity Using fMRI , 2010, Science.

[8]  Stephen M. Smith,et al.  The future of FMRI connectivity , 2012, NeuroImage.

[9]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[10]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[11]  Sungho Tak,et al.  Statistical analysis of fNIRS data: A comprehensive review , 2014, NeuroImage.

[12]  Xiaoyun Liang,et al.  A novel joint sparse partial correlation method for estimating group functional networks , 2016, Human brain mapping.

[13]  I. Dryden,et al.  Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging , 2009, 0910.1656.

[14]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[15]  Hermann Haken,et al.  Exploring the Brain , 2013 .

[16]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Gaël Varoquaux,et al.  Learning and comparing functional connectomes across subjects , 2013, NeuroImage.

[18]  G. Varoquaux,et al.  Hyperfrontality and hypoconnectivity during refreshing in schizophrenia , 2013, Psychiatry Research: Neuroimaging.

[19]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[20]  Christopher R. Jones,et al.  Sleep duration and resting fMRI functional connectivity: examination of short sleepers with and without perceived daytime dysfunction , 2016, Brain and behavior.

[21]  M. V. D. Heuvel,et al.  Exploring the brain network: A review on resting-state fMRI functional connectivity , 2010, European Neuropsychopharmacology.

[22]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[23]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[24]  Deborah Stevenson Homer (review) , 2012 .

[25]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[26]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[27]  Dimitri Van De Ville,et al.  The dynamic functional connectome: State-of-the-art and perspectives , 2017, NeuroImage.

[28]  Nicholas Ayache,et al.  Clinical DT-MRI estimation, smoothing and fiber tracking with Log-Euclidean metrics , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[29]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[30]  M. Pourahmadi Covariance Estimation: The GLM and Regularization Perspectives , 2011, 1202.1661.

[31]  M. P. van den Heuvel,et al.  Exploring the brain network: a review on resting-state fMRI functional connectivity. , 2010, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology.

[32]  Rachid Deriche,et al.  DTI segmentation by statistical surface evolution , 2006, IEEE Transactions on Medical Imaging.

[33]  Xavier Pennec,et al.  Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements , 1999, NSIP.

[34]  F. Bookstein Size and Shape Spaces for Landmark Data in Two Dimensions , 1986 .

[35]  Merrill W. Liechty,et al.  Bayesian correlation estimation , 2004 .

[36]  Jun Li,et al.  Hypothesis Testing For Network Data in Functional Neuroimaging , 2014, 1407.5525.

[37]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[38]  Sungho Tak,et al.  NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy , 2009, NeuroImage.

[39]  Peter D. Hoff,et al.  A Covariance Regression Model , 2011, 1102.5721.

[40]  Jean-Baptiste Poline,et al.  Brain covariance selection: better individual functional connectivity models using population prior , 2010, NIPS.

[41]  M. Raichle,et al.  Cortical network functional connectivity in the descent to sleep , 2009, Proceedings of the National Academy of Sciences.

[42]  Steen Moeller,et al.  ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging , 2014, NeuroImage.

[43]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[44]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[45]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[46]  G. Varoquaux,et al.  Markov models for fMRI correlation structure: Is brain functional connectivity small world, or decomposable into networks? , 2012, Journal of Physiology-Paris.

[47]  L. Tucker,et al.  Procrustes matching by congruence coefficients , 1976 .

[48]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[49]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[50]  Gaël Varoquaux,et al.  Detection of Brain Functional-Connectivity Difference in Post-stroke Patients Using Group-Level Covariance Modeling , 2010, MICCAI.

[51]  M. Hirshkowitz,et al.  National Sleep Foundation's sleep time duration recommendations: methodology and results summary. , 2015, Sleep health.

[52]  Jingyuan E. Chen,et al.  NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication , 2016, Front. Hum. Neurosci..

[53]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo in Practice: A Roundtable Discussion , 1998 .

[54]  J. Zidek,et al.  Inference for a covariance matrix , 1994 .

[55]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[56]  Melissa R. Weiner,et al.  Self-reported nocturnal sleep duration is associated with next-day resting state functional connectivity , 2012, Neuroreport.

[57]  James G. Scott,et al.  An exploration of aspects of Bayesian multiple testing , 2006 .

[58]  R. Dougherty,et al.  FALSE DISCOVERY RATE ANALYSIS OF BRAIN DIFFUSION DIRECTION MAPS. , 2008, The annals of applied statistics.

[59]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[60]  M. Corbetta,et al.  Learning sculpts the spontaneous activity of the resting human brain , 2009, Proceedings of the National Academy of Sciences.

[61]  M. Greicius Resting-state functional connectivity in neuropsychiatric disorders , 2008, Current opinion in neurology.

[62]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[63]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[64]  James M. Flegal,et al.  Multivariate output analysis for Markov chain Monte Carlo , 2015, Biometrika.

[65]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[66]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[67]  Dorota Kurowicka,et al.  Generating random correlation matrices based on vines and extended onion method , 2009, J. Multivar. Anal..

[68]  D. Boas,et al.  HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. , 2009, Applied optics.

[69]  H. Laufs,et al.  Decoding Wakefulness Levels from Typical fMRI Resting-State Data Reveals Reliable Drifts between Wakefulness and Sleep , 2014, Neuron.

[70]  Anuj Srivastava,et al.  Statistical Shape Analysis , 2014, Computer Vision, A Reference Guide.

[71]  Karl J. Friston Functional and Effective Connectivity: A Review , 2011, Brain Connect..

[72]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[73]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[74]  Peter D. Hoff,et al.  A hierarchical eigenmodel for pooled covariance estimation , 2008, 0804.0031.

[75]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[76]  M. Fox,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[77]  Habib Benali,et al.  Regions, systems, and the brain: Hierarchical measures of functional integration in fMRI , 2008, Medical Image Anal..

[78]  Uri Hasson,et al.  Progression to deep sleep is characterized by changes to BOLD dynamics in sensory cortices , 2016, NeuroImage.

[79]  James G. Scott,et al.  Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem , 2010, 1011.2333.

[80]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[81]  T. W. Anderson Asymptotically Efficient Estimation of Covariance Matrices with Linear Structure , 1973 .

[82]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[83]  R Cameron Craddock,et al.  A whole brain fMRI atlas generated via spatially constrained spectral clustering , 2012, Human brain mapping.

[84]  Aapo Hyvärinen,et al.  Group-PCA for very large fMRI datasets , 2014, NeuroImage.