Aggregation and Incipient Agglomeration in Metallized Solid Propellants and Solid Fuels for Rocket Propulsion

Metal fuels are commonly used as high-energy ingredients in both solid and hybrid rocket propulsion systems. However, aggregation and agglomeration effects can sensibly modify ballistic properties and anyhow reduce the delivered specific impulse with respect to the computed ideal value. A survey of possible effects is offered, indicating widely different flame structures. A good understanding of the relevant burning phenomena opens the way to improved system performance by reducing combustion and gasdynamic expansion losses.

[1]  G. Colombo,et al.  Time-resolved burning of solid fuels for hybrid rocket propulsion , 2011 .

[2]  Filippo Maggi,et al.  Microstructure Effects in Aluminized Solid Rocket Propellants , 2010 .

[3]  V. A. Babuk,et al.  Condensed combustion products from burning of nanoaluminum-based propellants: properties and formation mechanism , 2009 .

[4]  V. A. Babuk,et al.  Nanoaluminum as a Solid Propellant Fuel , 2009 .

[5]  Luigi T. DeLuca,et al.  Burning of Metallized Composite Solid Rocket Propellants: from Micrometric to Nanometric Aluminum Size , 2008 .

[6]  Merrill K. King,et al.  Ignition and Combustion of Boron Particles and Clouds , 1982 .

[7]  C. F. Price,et al.  A Computer Program for the Prediction of Solid Propellant Rocket Motor Performance. Volume 3 , 1975 .

[8]  J. Steinz,et al.  Low Pressure Burning of Composite Solid Propellants , 1969 .

[9]  G. Colombo,et al.  Burning of Metallized Composite Solid Rocket Propellants: Toward Nanometric Fuel Size , 2008 .

[10]  L. T. De Luca,et al.  Burning of Aluminized Solid Rocket Propellants: from Micrometric to Nanometric Fuel Size , 2007 .

[11]  V. A. Babuk,et al.  Dual-Oxidizer Solid Rocket Propellants for Low-Cost Access to Space , 2005 .

[12]  P. Folly,et al.  Propellant Chemistry , 2004 .

[13]  T. Brill,et al.  Formation of Condensed Combustion Products at the Burning Surface of Solid Rocket Propellant , 2000 .

[14]  Vigor Yang,et al.  Solid propellant chemistry, combustion, and motor interior ballistics , 2000 .

[15]  T. Brill,et al.  Combustion of Aluminized Solid Propellants , 2000 .

[16]  L. D. Strand,et al.  Laboratory test methods for combustion stability properties of solid propellants , 1992 .

[17]  Martin Summerfield,et al.  Applications of Combustion-Stability Technology to Solid-Propellant Rocket Motors , 1992 .

[18]  T. Mitani,et al.  Combustion Efficiencies of Aluminum and Boron in Solid Propellants , 1991 .

[19]  M. King A REVIEW OF STUDIES OF BORON IGNITION AND COMBUSTION PHENOMENA AT ATLANTIC RESEARCH CORPORATION OVER THE PAST DECADE , 1991 .

[20]  P. Antaki,et al.  A physical and chemical interpretation of boron particle combustion , 1985 .

[21]  K. Kuo Experimental Observations of Combustion Instability , 1984 .

[22]  A. N. Zolotko,et al.  Ignition of packed boron particles , 1975 .