Exploiting matrix symmetries and physical symmetries in matrix product states and tensor trains
暂无分享,去创建一个
T. Schulte-Herbrüggen | T. Huckle | T. Schulte-Herbrueggen | T. Schulte-Herbrueggen | K. Waldherr | T. Huckle | K. Waldherr
[1] Kennedy,et al. Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.
[2] Frank Verstraete,et al. Matrix product state representations , 2006, Quantum Inf. Comput..
[3] Stefano Serra Capizzano,et al. Any Circulant-Like Preconditioner for Multilevel Matrices Is Not Superlinear , 2000, SIAM J. Matrix Anal. Appl..
[4] T. Schulte-Herbrüggen,et al. Computations in quantum tensor networks , 2012, 1212.5005.
[5] B. Khoromskij. O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .
[6] F. Verstraete,et al. Exploiting translational invariance in matrix product state simulations of spin chains with periodic boundary conditions , 2010, 1005.5195.
[7] F. Verstraete,et al. Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.
[8] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[9] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[10] E. Lieb,et al. Two Soluble Models of an Antiferromagnetic Chain , 1961 .
[11] M. Sanz,et al. Matrix product states: Symmetries and two-body Hamiltonians , 2009, 0901.2223.
[12] J I Cirac,et al. String order and symmetries in quantum spin lattices. , 2008, Physical review letters.
[13] Michael Bader,et al. Matrix exponentials and parallel prefix computation in a quantum control problem , 2010, Parallel Comput..
[14] A W Sandvik,et al. Variational quantum Monte Carlo simulations with tensor-network states. , 2007, Physical review letters.
[15] Gene H. Golub,et al. Matrix computations , 1983 .
[16] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[17] Antonio Cantoni,et al. Properties of the Eigenvectors of Persymmetric Matrices with Applications to Communication Theory , 1976, IEEE Trans. Commun..
[18] S. R. Simanca,et al. On Circulant Matrices , 2012 .
[19] L. Faddeev,et al. Lectures on Quantum Mechanics for Mathematics Students , 2009 .
[20] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[21] P. Pfeuty. The one-dimensional Ising model with a transverse field , 1970 .
[22] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[23] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .