Analysis of S-box image encryption based on generalized fuzzy soft expert set

This article is about a criterion based on generalized fuzzy soft expert set to scrutinize the prevailing substitution boxes and learn their properties to sort out their suitability in image encryption applications. The projected criterion makes use of the results of correlation analysis, entropy analysis, contrast analysis, homogeneity analysis, energy analysis, and mean of absolute deviation analysis. These analyses are applied to Advanced Encryption Standard S-box, Affine-Power-Affine S-box, Gray S-box, $$\hbox {S}_{8}$$S8 S-box, residue prime S-box, SKIPJACK S-box and Liu J S-box. The outcome of these analyses is additional observed and a generalized fuzzy soft expert set criterion is used to decide the suitability of an S-box to image encryption applications.

[1]  Tariq Shah,et al.  A projective general linear group based algorithm for the construction of substitution box for block ciphers , 2012, Neural Computing and Applications.

[2]  Iqtadar Hussain,et al.  An extended image encryption using chaotic coupled map and S-box transformation , 2014, Nonlinear Dynamics.

[3]  K. Ramar,et al.  Public key cryptosystems based on chaotic-Chebyshev polynomials , 2009, 2009 International Conference on Intelligent Agent & Multi-Agent Systems.

[4]  Nasir D. Memon,et al.  Steganalysis using image quality metrics , 2003, IEEE Trans. Image Process..

[5]  Adil Masood Siddiqui,et al.  Chaotic substitution for highly autocorrelated data in encryption algorithm , 2014, Commun. Nonlinear Sci. Numer. Simul..

[6]  Chin-Tu Chen,et al.  Split-and-merge image segmentation based on localized feature analysis and statistical tests , 1991, CVGIP Graph. Model. Image Process..

[7]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[8]  Shawkat Alkhazaleh,et al.  Soft Expert Sets , 2011, Adv. Decis. Sci..

[9]  Amir Anees,et al.  Analysis of optimized signal processing algorithms for smart antenna system , 2012, Neural Computing and Applications.

[10]  A. A. Zaidan,et al.  Using the features of mosaic image and AES cryptosystem to implement an extremely high rate and high secure data hidden: analytical study , 2010 .

[11]  Tariq Shah,et al.  Literature survey on nonlinear components and chaotic nonlinear components of block ciphers , 2013, Nonlinear Dynamics.

[12]  Eltayeb Salih Abuelyman,et al.  An Optimized Implementation of the S-Box using Residues of Prime Numbers , 2008 .

[13]  Ayman A. Hazaymeh,et al.  Generalized Fuzzy Soft Expert Set , 2012, J. Appl. Math..

[14]  Minh-Triet Tran,et al.  Gray S-Box for Advanced Encryption Standard , 2008, 2008 International Conference on Computational Intelligence and Security.

[15]  Bobby Schmidt,et al.  Fuzzy math , 2001 .

[16]  K. Atanassov Operators over interval valued intuitionistic fuzzy sets , 1994 .

[17]  A. R. Salleh,et al.  Fuzzy Parameterized Interval-Valued Fuzzy Soft Set , 2011 .

[18]  Tariq Shah,et al.  Application of S-box and chaotic map for image encryption , 2013, Math. Comput. Model..

[19]  Iqtadar Hussain,et al.  A New Algorithm to Construct Secure Keys for AES , 2010 .

[20]  Tariq Shah,et al.  A group theoretic approach to construct cryptographically strong substitution boxes , 2012, Neural Computing and Applications.

[21]  Tariq Shah,et al.  Efficient method for designing chaotic S-boxes based on generalized Baker’s map and TDERC chaotic sequence , 2013 .

[22]  Sajjad Shaukat Jamal,et al.  An efficient scheme for digital watermarking using chaotic map , 2013 .

[23]  Tariq Shah,et al.  Substitution Box on Maximal Cyclic Subgroup of Units of a Galois Ring , 2013 .

[24]  X. Liao,et al.  An image encryption approach based on chaotic maps , 2005 .

[25]  Tariq Shah,et al.  An efficient approach for the construction of LFT S-boxes using chaotic logistic map , 2012, Nonlinear Dynamics.

[26]  Pabitra Kumar Maji,et al.  FUZZY SOFT SETS , 2001 .

[27]  M. Gorzałczany A method for inference in approximate reasoning based on interval-valued fuzzy sets , 1987 .

[28]  Pinaki Majumdar,et al.  Generalised fuzzy soft sets , 2010, Comput. Math. Appl..

[29]  Tariq Shah,et al.  Stego optical encryption based on chaotic S-box transformation , 2014 .

[30]  E. S. Gadelmawla,et al.  A vision system for surface roughness characterization using the gray level co-occurrence matrix , 2004 .

[31]  Iqtadar Hussain,et al.  Application of Mean of Absolute Deviation Method for the Selection of Best Nonlinear Component Based on Video Encryption , 2013 .

[32]  Iqtadar Hussain,et al.  A technique for digital steganography using chaotic maps , 2014 .

[33]  D. Molodtsov Soft set theory—First results , 1999 .

[34]  Rasul Enayatifar,et al.  Image encryption via logistic map function and heap tree , 2011 .

[35]  Tariq Shah,et al.  A novel image encryption algorithm based on chaotic maps and GF(28) exponent transformation , 2013 .

[36]  Bo Zhang,et al.  Unsupervised image segmentation using local homogeneity analysis , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[37]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[38]  Mohammed Yakoob Siyal,et al.  A Noisy Channel Tolerant Image Encryption Scheme , 2014, Wireless Personal Communications.

[39]  Kwok-Yan Lam,et al.  A method for obtaining cryptographically strong 8/spl times/8 S-boxes , 1997, GLOBECOM 97. IEEE Global Telecommunications Conference. Conference Record.

[40]  Iqtadar Hussain,et al.  A novel approach of audio watermarking based on S-box transformation , 2013, Math. Comput. Model..

[41]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[42]  Tariq Shah,et al.  A novel method for designing nonlinear component for block cipher based on TD-ERCS chaotic sequence , 2013 .