High-dimensional distributions with convexity properties

We review recent advances in the understanding of probability measures with geometric characteristics on Rn, for large n. These advances include the central limit theorem for convex sets, according to which the uniform measure on a highdimensional convex body has marginals that are approximately gaussian.

[1]  Asymptotics of Cross Sections for Convex Bodies , 2000 .

[2]  A. Ros,et al.  The Isoperimetric Problem , 2003 .

[3]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[4]  D. Freedman,et al.  Asymptotics of Graphical Projection Pursuit , 1984 .

[5]  E. Schmidt Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I , 1948 .

[6]  S. G. Bobkov,et al.  Spectral Gap and Concentration for Some Spherically Symmetric Probability Measures , 2003 .

[7]  B. Klartag Marginals of Geometric Inequalities , 2007 .

[8]  Sergey G. Bobkov,et al.  On the Central Limit Property of Convex Bodies , 2003 .

[9]  Viktor Blåsjö,et al.  The Isoperimetric Problem , 2005, Am. Math. Mon..

[10]  H. Weizsäcker,et al.  Sudakov's typical marginals, random linear functionals and a conditional central limit theorem , 1997 .

[11]  Concentration of mass on isotropic convex bodies , 2006 .

[12]  B. Klartag On nearly radial marginals of high-dimensional probability measures , 2008, 0810.4700.

[13]  J. Bourgain On the distribution of polynomials on high dimensional convex sets , 1991 .

[14]  B. Klartag,et al.  Power-law estimates for the central limit theorem for convex sets , 2006, math/0611577.

[15]  Ronen Eldan,et al.  Pointwise Estimates for Marginals of Convex Bodies , 2007 .

[16]  Rafael Villa,et al.  Concentration of the distance in finite dimensional normed spaces , 1998 .

[17]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[18]  B. Maurey,et al.  The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems , 2004 .

[19]  E. Davies,et al.  Spectral Theory and Differential Operators: Index , 1995 .

[20]  Miklós Simonovits,et al.  Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..

[21]  C. Borell Convex set functions ind-space , 1975 .

[22]  Keith Ball,et al.  The central limit problem for convex bodies , 2003 .

[23]  A. Pajor,et al.  A note on subgaussian estimates for linear functionals on convex bodies , 2006, math/0604299.

[24]  Fedor Nazarov,et al.  On Convex Bodies and Log-Concave Probability Measures with Unconditional Basis , 2003 .

[25]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[26]  M. Gromov,et al.  A topological application of the isoperimetric inequality , 1983 .

[27]  V. Milman,et al.  Averages of norms and quasi-norms , 1998 .

[28]  S. Bobkov Large deviations and isoperimetry over convex probability measures with heavy tails , 2007 .

[29]  C. Borell Convex measures on locally convex spaces , 1974 .

[30]  V. Milman The Concentration Phenomenon and Linear Structure of Finite-Dimensional Normed Spaces , 2010 .

[31]  A. Carbery,et al.  Distributional and L-q norm inequalities for polynomials over convex bodies in R-n , 2001 .

[32]  Sergey G. Bobkov,et al.  On concentration of distributions of random weighted sums , 2003 .

[33]  D. Hensley Slicing convex bodies—bounds for slice area in terms of the body’s covariance , 1980 .

[34]  G. Paouris Concentration of mass on convex bodies , 2006 .

[35]  P. Levy,et al.  Problèmes concrets d'analyse fonctionnelle , 1952 .

[36]  V. Milman New proof of the theorem of A. Dvoretzky on intersections of convex bodies , 1971 .

[37]  Fedor Nazarov,et al.  Large Deviations of Typical Linear Functionals on a Convex Body with Unconditional Basis , 2003 .

[38]  Grigoris Paouris,et al.  A stability result for mean width of Lp-centroid bodies , 2007 .

[39]  K. Ball Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .

[40]  M. Gromov,et al.  Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces , 1987 .

[41]  T. Figiel,et al.  The dimension of almost spherical sections of convex bodies , 1976 .

[42]  B. Klartag A central limit theorem for convex sets , 2006, math/0605014.

[43]  M. Fradelizi Hyperplane Sections of Convex Bodies in Isotropic Position , 1999 .

[44]  B. Klartag,et al.  A Berry-Esseen type inequality for convex bodies with an unconditional basis , 2007, 0705.0832.

[45]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[46]  M. Gromov Dimension, non-linear spectra and width , 1988 .

[47]  Global versus local asymptotic theories of finite-dimensional normed spaces , 1997 .

[48]  B. Klartag Uniform almost sub-Gaussian estimates for linear functionals on convex sets , 2007 .