Robust nonparametric estimation via wavelet median regression

In this paper we develop a nonparametric regression method that is simultaneously adaptive over a wide range of function classes for the regression function and robust over a large collection of error distributions, including those that are heavy-tailed, and may not even possess variances or means. Our approach is to first use local medians to turn the problem of nonparametric regression with unknown noise distribution into a standard Gaussian regression problem and then apply a wavelet block thresholding procedure to construct an estimator of the regression function. It is shown that the estimator simultaneously attains the optimal rate of convergence over a wide range of the Besov classes, without prior knowledge of the smoothness of the underlying functions or prior knowledge of the error distribution. The estimator also automatically adapts to the local smoothness of the underlying function, and attains the local adaptive minimax rate for estimating functions at a point. A key technical result in our development is a quantile coupling theorem which gives a tight bound for the quantile coupling between the sample medians and a normal variable. This median coupling inequality may be of independent interest.

[1]  Harrison H. Zhou,et al.  The root–unroot algorithm for density estimation as implemented via wavelet block thresholding , 2010 .

[2]  Harrison H. Zhou,et al.  A data-driven block thresholding approach to wavelet estimation , 2009, 0903.5147.

[3]  Harrison H. Zhou A Note on Quantile Coupling Inequalities and Their Applications , 2006 .

[4]  R. Averkamp,et al.  Wavelet thresholding for nonnecessarily Gaussian noise: Functionality , 2005 .

[5]  Cun-Hui Zhang General empirical Bayes wavelet methods and exactly adaptive minimax estimation , 2005, math/0504501.

[6]  R. Taylor A User's Guide to Measure-Theoretic Probability , 2003 .

[7]  R. Averkamp,et al.  Wavelet thresholding for non-necessarily Gaussian noise: idealism , 2003 .

[8]  David M. Mason,et al.  Notes on the KMT Brownian Bridge Approximation to the Uniform Empirical Process , 2001 .

[9]  Bart W. Stuck An historical overview of stable probability distributions in signal processing , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[10]  David L. Donoho,et al.  Nonlinear Pyramid Transforms Based on Median-Interpolation , 2000, SIAM J. Math. Anal..

[11]  T. Cai Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .

[12]  Roland Averkamp,et al.  Wavelet Thresholding for Non (Necessarily) Gaussian Noise , 1999 .

[13]  Arne Kovac,et al.  Extending the Scope of Wavelet Regression Methods by Coefficient-Dependent Thresholding , 2000 .

[14]  T. Tony Cai,et al.  WAVELET SHRINKAGE FOR NONEQUISPACED SAMPLES , 1998 .

[15]  Ion Grama,et al.  Asymptotic equivalence for nonparametric generalized linear models , 1998 .

[16]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[17]  M. Burnashev Asymptotic Expansions for Median Estimate of a Parameter , 1997 .

[18]  M. Nussbaum Asymptotic Equivalence of Density Estimation and Gaussian White Noise , 1996 .

[19]  L. Brown,et al.  A constrained risk inequality with applications to nonparametric functional estimation , 1996 .

[20]  L. Brown,et al.  Asymptotic equivalence of nonparametric regression and white noise , 1996 .

[21]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[22]  Sung K. Ahn,et al.  Strong Approximation of the Quantile Processes and Its Applications under Strong Mixing Properties , 1994 .

[23]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[24]  Y. Meyer Wavelets and Operators , 1993 .

[25]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[26]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[27]  P. Massart,et al.  HUNGARIAN CONSTRUCTIONS FROM THE NONASYMPTOTIC VIEWPOINT , 1989 .

[28]  R. DeVore,et al.  Interpolation of Besov-Spaces , 1988 .

[29]  H. Triebel Theory Of Function Spaces , 1983 .

[30]  P. Major,et al.  An approximation of partial sums of independent RV'-s, and the sample DF. I , 1975 .

[31]  B. Stuck,et al.  A statistical analysis of telephone noise , 1974 .