Trajectory of the nodal roots of maize in fields with low mechanical constraints

The trajectories of seventy three nodal roots of maize were studied in two fields with loose soil structure. Their projections on horizontal and vertical planes were traced. These roots tended to remain in a vertical plane. Trajectories were related to each other by an affine transformation. Thus, all the observed trajectories could be obtained by transformation of a common root archetype. The horizontal component of the trajectories was mainly in the first 0.4 m depth of soil, in the layer where soil structure was disturbed by ploughing. This horizontal component decreased with later appearance of roots (upper internodes), but differed between the two sites. The average soil temperature during the week following root appearance accounted for differences between internodes and sites. Lungley's algorithm, which is commonly used in modelling root trajectories, was tested. A general pattern could be simulated, but the model failed to fit the trajectories in the first 100 to 200 mm of soil. As a consequence, the initial angle between the stem and the root, which is a sensitive parameter in Lungley's model, did not account for differences between root trajectories.

[1]  A. J. Diggle,et al.  ROOTMAP—a model in three-dimensional coordinates of the growth and structure of fibrous root systems , 1988, Plant and Soil.

[2]  S. A. Barber,et al.  Rooting Systems of Soybeans. I. Differences in Root Morphology among Varieties1 , 1970 .

[3]  F. Tardieu,et al.  Analysis of the spatial variability of maize root density , 1988, Plant and Soil.

[4]  S. Sheppard,et al.  Temperature changes and the geotropic reaction of the radicle of zea mays L. , 1977, Plant and Soil.

[5]  François Tardieu,et al.  Caractérisation en tant que capteur d'eau de l'enracinement du maïs en parcelle cultivée. II. - Une méthode d'étude de la répartition verticale et horizontale des racines , 1986 .

[6]  Claude Varlet-Grancher,et al.  Rythme d'apparition des racines primaires du maïs (Zea mays L.). III. Variations observées au champ , 1988 .

[7]  D. C. Hoppe,et al.  The nodal roots of Zea: their development in relation to structural features of the stem , 1986 .

[8]  F. Tardieu,et al.  Analysis of the spatial variability of maize root density , 1988, Plant and Soil.

[9]  Marie-Odile Jordan,et al.  Rythme d'apparition des racines primaires du maïs (Zea mays L.) I. — Etude détaillée pour une variété en un lieu donné , 1985 .

[10]  H. Manichon Observation morphologique de l'état structural et mise en évidence d'effets de compactage des horizons travaillés , 1987 .

[11]  F. Tardieu Analysis of the spatial variability in maize root density , 1988, Plant and Soil.

[12]  Loïc Pagès,et al.  SARAH : modèle de simulation de la croissance, du développement et de l'architecture des systèmes racinaires , 1988 .

[13]  M. van Noordwijk,et al.  Roots, plant production and nutrient use efficiency , 1987 .

[14]  J. Ketcheson,et al.  Effect of soil temperature on direction of corn root growth , 1973, Plant and Soil.

[15]  Betty Klepper,et al.  A model (WHTROOT) which synchronizes root growth and development with shoot development for winter wheat , 1986, Plant and Soil.

[16]  D. Lungley,et al.  The growth of root systems — A numerical computer simulation model , 1973, Plant and Soil.

[17]  F. Tardieu,et al.  Caractérisation en tant que capteur d'eau de l'enracinement du maïs en parcelle cultivée. I: Discussion des critères d'étude , 1986 .