An enhanced Bat algorithm with mutation operator for numerical optimization problems

This article introduces a new variation of a known metaheuristic method for solving global optimization problems. The proposed algorithm is based on the Bat algorithm (BA), which is inspired by the micro-bat echolocation phenomenon, and addresses the problems of local-optima trapping using a special mutation operator that enhances the diversity of the standard BA, hence the name enhanced Bat algorithm (EBat). The design of EBat is introduced and its performance is evaluated against 24 of the standard benchmark functions, and compared to that of the standard BA, as well as to several well-established metaheuristic techniques. We also analyze the impact of different parameters on the EBat algorithm and determine the best combination of parameter values in the context of numerical optimization. The obtained results show that the new EBat method is indeed a promising addition to the arsenal of metaheuristic algorithms and can outperform several existing ones, including the original BA algorithm.

[1]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[2]  Mohammed Azmi Al-Betar,et al.  β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-Hill climbing: an exploratory local search , 2016, Neural Computing and Applications.

[3]  Shengyong Chen,et al.  Biogeography-Based Optimization , 2018, Biogeography-Based Optimization: Algorithms and Applications.

[4]  Marjan Mernik,et al.  A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting Sovova's mass transfer model , 2013, Appl. Soft Comput..

[5]  Yong Wang,et al.  An Adaptive Bat Algorithm , 2013, ICIC.

[6]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[7]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[8]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[9]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[10]  Jeng-Shyang Pan,et al.  Bat Algorithm Inspired Algorithm for Solving Numerical Optimization Problems , 2011 .

[11]  Gaige Wang,et al.  A Novel Hybrid Bat Algorithm with Harmony Search for Global Numerical Optimization , 2013, J. Appl. Math..

[12]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[13]  Yu Liu,et al.  A New Bio-inspired Algorithm: Chicken Swarm Optimization , 2014, ICSI.

[14]  Scott Kirkpatrick,et al.  Optimization by Simmulated Annealing , 1983, Sci..

[15]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[16]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[17]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[18]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[19]  Seyedali Mirjalili,et al.  Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems , 2015, Neural Computing and Applications.

[20]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[21]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[22]  Peter J. Fleming,et al.  The Stud GA: A Mini Revolution? , 1998, PPSN.

[23]  S. Deb,et al.  Elephant Herding Optimization , 2015, 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI).

[24]  Xin-She Yang,et al.  Bat algorithm: literature review and applications , 2013, Int. J. Bio Inspired Comput..

[25]  Xin-She Yang,et al.  A literature survey of benchmark functions for global optimisation problems , 2013, Int. J. Math. Model. Numer. Optimisation.

[26]  Minghao Yin,et al.  Animal migration optimization: an optimization algorithm inspired by animal migration behavior , 2014, Neural Computing and Applications.

[27]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[28]  Leandro dos Santos Coelho,et al.  Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems , 2018, Int. J. Bio Inspired Comput..

[29]  Ali Kaveh,et al.  ENHANCED BAT ALGORITHM FOR OPTIMAL DESIGN OF SKELETAL STRUCTURES , 2014 .

[30]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[31]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[32]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[33]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[34]  Selim Yilmaz,et al.  A new modification approach on bat algorithm for solving optimization problems , 2015, Appl. Soft Comput..

[35]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[36]  Zhihua Cui,et al.  Monarch butterfly optimization , 2015, Neural Computing and Applications.

[37]  Manuel Laguna,et al.  Tabu Search , 1997 .

[38]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[39]  Aman Jantan,et al.  Hybridizing artificial bee colony with monarch butterfly optimization for numerical optimization problems , 2018, Neural Computing and Applications.

[40]  Seyed Mohammad Mirjalili,et al.  The Ant Lion Optimizer , 2015, Adv. Eng. Softw..

[41]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[42]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[43]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[44]  Milan Tuba,et al.  Improved Hybridized Bat Algorithm for Global Numerical Optimization , 2014, 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation.

[45]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[46]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.